swirlspy.ver package

Submodules

swirlspy.ver.crosstab module

swirlspy.ver.crosstab.contingency(threshold, forecast, observed)

Generates contingency table statistics for traditional binary verification

threshold: float

Threshold value of variable for verification.

forecast: xarray

An xarray containing forecasted values of variable

observed: xarray

An xarray containing observed values of variable

Returns

contingency – tuple structure is (hit, miss, false_alarm, corrneg)

Return type

tuple

Notes

hit: int

number of hits

miss: int

number of misses

false_alarm: int

number of false alarms

corrneg: int

number of correct negatives

swirlspy.ver.metric module

swirlspy.ver.metric.accuracy(cont)

Calculates accuracy

Parameters

cont (tuple) – cont = (hit, miss, false_alarm, corrneg) hit (number of hits) = cont[0] miss (number of misses) = cont[1] false_alarm (number of false alarms) = cont[2] corrneg (number of correct negatives) = cont[3]

Returns

accuracy – accuracy = (hit+corrneg)/total total = hit+miss+false_alarm+corrneg

Return type

float

swirlspy.ver.metric.csi(cont)

Calculates Critical Success Index

Parameters

cont (tuple) – cont = (hit, miss, false_alarm, corrneg) hit (number of hits) = cont[0] miss (number of misses) = cont[1] false_alarm (number of false alarms) = cont[2] corrneg (number of correct negatives) = cont[3]

Returns

  • critical success index (float)

  • csi = hit/(hit+false_alarm+miss)

swirlspy.ver.metric.ets(cont)

Returns Equitable Threat Score[0 = no skill][1 = perfect]

Parameters

cont (tuple) – cont = (hit, miss, false_alarm, corrneg) hit (number of hits) = cont[0] miss (number of misses) = cont[1] false_alarm (number of false alarms) = cont[2] corrneg (number of correct negatives) = cont[3]

Returns

  • equitable threat score (float)

  • ets = (hit - hit_expected)/(hit+miss+false_alarm-hit_expected)

  • where hit_expected = hit+miss)*(hit+false_alarm)/total

  • total = hit + miss + false_alarm + corrneg

swirlspy.ver.metric.far(cont)

Calculates False Alarm Ratio

Parameters

cont (tuple) – cont = (hit, miss, false_alarm, corrneg) hit (number of hits) = cont[0] miss (number of misses) = cont[1] false_alarm (number of false alarms) = cont[2] corrneg (number of correct negatives) = cont[3]

Returns

false alarm ratio – far = false_alarm/(hit+false_alarm)

Return type

float

swirlspy.ver.metric.freq_bias(cont)

Calculates Frequency Bias

Parameters

cont (tuple) – cont = (hit, miss, false_alarm, corrneg) hit (number of hits) = cont[0] miss (number of misses) = cont[1] false_alarm (number of false alarms) = cont[2] corrneg (number of correct negatives) = cont[3]

Returns

  • frequency bias (float or int)

  • freq_bias = (hit+false_alarm)/(hit+miss)

swirlspy.ver.metric.hss(cont)

Calculates Heidke Skill Score [0 = no skill][1=perfect]

Parameters

cont (tuple) – cont = (hit, miss, false_alarm, corrneg) hit (number of hits) = cont[0] miss (number of misses) = cont[1] false_alarm (number of false alarms) = cont[2] corrneg (number of correct negatives) = cont[3]

Returns

Heidke Success Score – hss = (hit+corrneg-hit_corrneg_expected)/(total-hit_corrneg_expected) hit_corrneg_expected = ((hit+miss)*(hit+false_alarm)

  • (false_alarm+corrneg) * (miss+corrneg)) / total

Return type

int or float

swirlspy.ver.metric.pod(cont)

Calculates Probability of Detection

Parameters

cont (tuple) – cont = (hit, miss, false_alarm, corrneg) hit (number of hits) = cont[0] miss (number of misses) = cont[1] false_alarm (number of false alarms) = cont[2] corrneg (number of correct negatives) = cont[3]

Returns

probability of detection – pod = hit/(hit+miss)

Return type

float

swirlspy.ver.metric.pofd(cont)

Calculates Probability of False Detection

Parameters

cont (tuple) – cont = (hit, miss, false_alarm, corrneg) hit (number of hits) = cont[0] miss (number of misses) = cont[1] false_alarm (number of false alarms) = cont[2] corrneg (number of correct negatives) = cont[3]

Returns

probability of false detection – pofd = false_alarm/(false_alarm + corrneg)

Return type

float