""" QPF ======================================================== This example demonstrates how to perform operational deterministic QPF up to three hours from raingauge and radar data. """ ########################################################### # Definitions # -------------------------------------------------------- # import os import numpy as np import pandas as pd from pyresample import utils import xarray import cartopy.feature as cfeature import cartopy.crs as ccrs import matplotlib import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm from swirlspy.rad.irisref import read_irisref from swirlspy.qpe.utils import dbz2rr, rr2rf, locate_file, timestamps_ending from swirlspy.qpe.utils import multiple_acc from swirlspy.obs.rain import Rain from swirlspy.qpf.rover import rover from swirlspy.qpf.sla import sla from swirlspy.core.resample import grid_resample plt.switch_backend('agg') THIS_DIR = os.getcwd() os.chdir(THIS_DIR) start_time = pd.Timestamp.now() ############################################################# # Initialising # --------------------------------------------------- # # This section demonstrates extracting # radar reflectivity data. # # Step 1: Define a basetime. # # Supply basetime basetime = pd.Timestamp('201902190800') ############################################################################## # Step 2: Using basetime, generate timestamps of desired radar files # timestamps_ending() and locate files using locate_file(). # Obtain radar files dir = THIS_DIR + '/../tests/samples/iris/ppi' located_files = [] radar_ts = timestamps_ending( basetime+pd.Timedelta(minutes=6), duration=pd.Timedelta(minutes=60) ) for timestamp in radar_ts: located_files.append(locate_file(dir, timestamp)) ############################################################################## # Step 3: Read data from radar files into xarray.DataArray # using read_irisref(). # reflectivity_list = [] # stores reflec from read_iris() for filename in located_files: reflec = read_irisref( filename ) reflectivity_list.append(reflec) ######################################################################## # Step 4: Define the target grid as a pyresample AreaDefinition. # Since the data is in Centered Azimuthal Projection, the source grid # also must also be defined as a pyresample AreaDefinition. # # Defining target grid area_id = "hk1980_250km" description = ("A 250 m resolution rectangular grid " "centred at HKO and extending to 250 km " "in each direction in HK1980 easting/northing coordinates") proj_id = 'hk1980' projection = ('+proj=tmerc +lat_0=22.31213333333334 ' '+lon_0=114.1785555555556 +k=1 +x_0=836694.05 ' '+y_0=819069.8 +ellps=intl +towgs84=-162.619,-276.959,' '-161.764,0.067753,-2.24365,-1.15883,-1.09425 +units=m ' '+no_defs') x_size = 500 y_size = 500 area_extent = (587000, 569000, 1087000, 1069000) area_def_tgt = utils.get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) # Defining source grid radius = 256000 sitecoords = reflectivity_list[0].attrs['site'] res = 480 area_id = 'aeqd' description = ("Azimuthal Equidistant Projection " "centered at the radar site " "extending up to {radius:f}m " "in each direction " "with a {res:f}x{res:f} grid resolution ").format( radius=radius, res=res ) proj_id = 'aeqd' projection = ('+proj=aeqd +lon_0={lon:f} ' + '+lat_0={lat:f} +ellps=WGS84 +datum=WGS84 ' + '+units=m +no_defs').format( lon=sitecoords[0], lat=sitecoords[1]) x_size = res y_size = res area_extent = (-radius, -radius, radius, radius) area_def_src = utils.get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) ############################################################################## # Step 5: Reproject the radar data from read_irisref() from Centered Azimuthal # (source) projection to HK 1980 (target) projection. reproj_reflectivity_list = [] for reflec in reflectivity_list: reproj_reflec = grid_resample( reflec, area_def_src, area_def_tgt, coord_label=['easting', 'northing'] ) reproj_reflectivity_list.append(reproj_reflec) ############################################################################ # Step 6: Assigning reflectivity xarrays at the last two timestamps to # variables for use during ROVER QPF. xarray1 = reproj_reflectivity_list[-2] xarray2 = reproj_reflectivity_list[-1] initialising_time = pd.Timestamp.now() ########################################################### # Running ROVER and Semi-Lagrangian Advection # ------------------------------------------- # # 1. Concatenate two reflectivity xarrays along time dimension. # 2. Run ROVER, with the concatenated xarray as the input. # 3. Perform Semi-Lagrangian Advection using the motion fields from rover. # Combining the two reflectivity DataArrays # the order of the coordinate keys is now ['y', 'x', 'time'] # as opposed to ['time', 'x', 'y'] reflec_concat = xarray.concat([xarray1, xarray2], dim='time') # Rover motion_u, motion_v = rover( reflec_concat ) rover_time = pd.Timestamp.now() # Semi Lagrangian Advection reflectivity = sla( reflec_concat, motion_u, motion_v, steps=30 ) sla_time = pd.Timestamp.now() ############################################################## # Concatenating observed and forecasted reflectivities # --------------------------------------------------- # # 1. Add forecasted reflectivity to reproj_reflectivity_list. # 2. Concatenate observed and forecasted reflectivity # xarray.DataArrays along the time dimension. reproj_reflectivity_list.append(reflectivity[1:, ...]) reflectivity = xarray.concat(reproj_reflectivity_list, dim='time') reflectivity.attrs['long_name'] = 'reflectivity' concat_time = pd.Timestamp.now() ################################################### # Generating labelled radar colour images # ---------------------------------------- # # Define the colour scale and the format of the # reflectivity plots. Then generate using xarray.plot(). # In this example, only hourly images will be plotted. levels = [ -32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44, 47, 50, 53, 56, 58, 60, 62 ] cmap = matplotlib.colors.ListedColormap([ '#FFFFFF', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # generate timesteps for plotting timesteps = [basetime+pd.Timedelta(hours=i) for i in range(4)] # Plot radar colour images. Only plot hourly images for time in timesteps: plt.figure(figsize=(15, 10)) plt.axis("equal") reflectivity.sel(time=time).plot(cmap=cmap, norm=norm) plt.savefig( os.path.join( THIS_DIR, ("../tests/outputs/rover-output-" f"{time.strftime('%Y%m%d%H%M')}.png") ) ) ############################################# # Generating radar reflectivity maps # ----------------------------------- # # Using the colour scale generated in the previous section, # generate radar reflectivity maps with Natural Earth Feature Coastlines # and motion field. # In this example only hourly images will be plotted. # Defining quiver parameters qx = motion_u.coords['easting'].values[::5] qy = motion_u.coords['northing'].values[::-5] qu = motion_u.values[::5, ::5] qv = motion_v.values[::5, ::5] for time in timesteps: plt.figure(figsize=(15, 10)) plt.axis("equal") crs = area_def_tgt.to_cartopy_crs() ax = plt.axes(projection=crs) ax.coastlines(resolution='10m') ax.gridlines() reflectivity.sel(time=time).plot(cmap=cmap, norm=norm) ax.quiver( qx, qy, qu, qv, pivot='mid', regrid_shape=20 ) plt.savefig( os.path.join( THIS_DIR, ("../tests/outputs/rover-output-map-" f"{time.strftime('%Y%m%d%H%M')}.png") ) ) radar_image_time = pd.Timestamp.now() ########################################################################## # Accumulating hourly rainfall for 3-hour forecast # ------------------------------------------------ # # Hourly accumulated rainfall is calculated every 30 minutes, the first # endtime is the basetime i.e. T+0min. # # | Step 1: Convert reflectivity in dBZ to rainrates in mm/h with dbz2rr(). # | Step 2: Convert rainrates to rainfalls in 6 mins with rr2rf(). rainrates = dbz2rr(reflectivity, a=58.53, b=1.56) rainfalls = rr2rf(rainrates) ###################################################################### # Step 3: Using multiple_acc(), calculate hourly accumulated # rainfall every 30 minutes. acc_rf = multiple_acc( rainfalls, basetime, basetime+pd.Timedelta(hours=3) ) acc_time = pd.Timestamp.now() ####################################################################### # Plotting rainfall maps # --------------------------------------- # # 1. Define the colour scheme. # 2. Defining the projection. # 3. Defining the zoom or area extent. Tuple order is (x0, x1, y0, y1) # as opposed to pyresample (x0, y0, x1, y1). # 4. Define figure # 5. Define axes. # 6. Adding area extent defined in (3) to axes. # 7. Adding coastlines (this example uses GSHHS). # 8. Add gridlines. # 9. Plot xarray using xarray.plot(). # 10. Adding title (if required). # Defining the colour scheme levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = matplotlib.colors.ListedColormap([ '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Defining projection crs = area_def_tgt.to_cartopy_crs() # Defining zoom extent r = 64000 proj_site = xarray1.proj_site zoom = ( proj_site[0]-r, proj_site[0]+r, proj_site[1]-r, proj_site[1]+r ) # Defining coastlines hires = cfeature.GSHHSFeature( scale='h', levels=[1], edgecolor='black', facecolor='none' ) for time in acc_rf.coords['time'].values: # Define figure plt.figure(figsize=(15, 10)) plt.axis('equal') # Plotting axes ax = plt.axes(projection=crs) # setting extent ax.set_extent(zoom, crs=crs) # Adding coastlines ax.add_feature(hires) # Add gridlines ax.gridlines() # Plot data acc_rf.sel(time=time).plot(cmap=cmap, norm=norm) # Add title t_minus = pd.Timestamp(time) - \ basetime-pd.Timedelta(minutes=60) t_minus = t_minus.to_timedelta64().astype('timedelta64[m]') t_plus = pd.Timestamp(time) - basetime t_plus = t_plus.to_timedelta64().astype('timedelta64[m]') plt.title( "Quantitative Precipitation Forecast with Hourly" " Accumulated Rainfall.\nBasetime: " + str(basetime) + "\nStart time: t " + str(t_minus) + " End time: t " + str(t_plus) ) plt.savefig( THIS_DIR + "/../tests/outputs/forecast-" + f"{pd.Timestamp(time).strftime('%Y%m%d%H%M')}.png" ) rf_image_time = pd.Timestamp.now() ############################################################################## # Extract the rainfall values at a specified location # ------------------------------------------------------------------ # # In this example, the rainfall values at the location is assumed # to be the same as the nearest gridpoint. # # 1. Read information regarding the radar stations into a pandas.DataFrame. # 2. Extract the rainfall values at the nearest gridpoint to location # for given timesteps (in this example, 30 minute intervals). # 3. Store rainfall values over time in a pandas.DataFrame. # 4. Plot the time series of rainfall at different stations. # Getting radar station coordinates df = pd.read_csv( os.path.join(THIS_DIR, "../tests/samples/hk_raingauge.csv"), usecols=[0, 1, 2, 3, 4] ) # Extract rainfall values at gridpoint closest to the # location specified for given timesteps and storing it # in pandas.DataFrame. rf_time = [] for time in acc_rf.coords['time'].values: rf = [] for index, row in df.iterrows(): rf.append(acc_rf.sel( time=time, northing=row[1], easting=row[2], method='nearest' ).values) rf_time.append(rf) rf_time = np.array(rf_time) station_rf = pd.DataFrame( data=rf_time, columns=df.iloc[:, 0], index=pd.Index( acc_rf.coords['time'].values, name='time' ) ) print(station_rf) # Plotting time series graph ax = station_rf.plot(title="Time Series of Hourly Accumulated Rainfall", grid=True) ax.set_ylabel("Hourly Accumulated Rainfall (mm)") plt.savefig(THIS_DIR+"/../tests/outputs/qpf_time_series.png") extract_time = pd.Timestamp.now() ###################################################################### # Checking run time of each component # -------------------------------------------------------------------- # print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"Rover time: {rover_time}") print(f"SLA time: {sla_time}") print(f"Concatenating time: {concat_time}") print(f"Plotting radar image time: {radar_image_time}") print(f"Accumulating rainfall time: {acc_time}") print(f"Plotting rainfall map time: {rf_image_time}") print(f"Extracting and plotting time series time: {extract_time}") print(f"Time to initialise: {initialising_time-start_time}") print(f"Time to run rover: {rover_time-initialising_time}") print(f"Time to perform SLA: {sla_time-rover_time}") print(f"Time to concatenate xarrays: {concat_time - sla_time}") print(f"Time to plot radar image: {radar_image_time - concat_time}") print(f"Time to accumulate rainfall: {acc_time - radar_image_time}") print(f"Time to plot rainfall maps: {rf_image_time-acc_time}") print(f"Time to extract and plot time series: {extract_time-rf_image_time}")