""" QPF (Hong Kong) ======================================================== This example demonstrates how to perform operational deterministic QPF up to three hours from raingauge and radar data, using data from Hong Kong. """ ########################################################### # Definitions # -------------------------------------------------------- # import os import numpy as np import pandas as pd from pyresample import utils import xarray import cartopy.feature as cfeature import cartopy.crs as ccrs import matplotlib import imageio import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm from swirlspy.rad.iris import read_iris_grid from swirlspy.qpe.utils import dbz2rr, rr2rf, locate_file, timestamps_ending from swirlspy.qpe.utils import multiple_acc from swirlspy.obs.rain import Rain from swirlspy.qpf.rover import rover from swirlspy.qpf.sla import sla from swirlspy.core.resample import grid_resample plt.switch_backend('agg') THIS_DIR = os.getcwd() os.chdir(THIS_DIR) start_time = pd.Timestamp.now() ############################################################# # Initialising # --------------------------------------------------- # # This section demonstrates extracting # radar reflectivity data. # # Step 1: Define a basetime. # # Supply basetime basetime = pd.Timestamp('201902190800') ############################################################################## # Step 2: Using basetime, generate timestamps of desired radar files # timestamps_ending() and locate files using locate_file(). # Obtain radar files dir = THIS_DIR + '/../tests/samples/iris/ppi' located_files = [] radar_ts = timestamps_ending( basetime, duration=pd.Timedelta(minutes=60) ) for timestamp in radar_ts: located_files.append(locate_file(dir, timestamp)) ############################################################################## # Step 3: Read data from radar files into xarray.DataArray # using read_iris_grid(). # reflectivity_list = [] # stores reflec from read_iris_grid() for filename in located_files: reflec = read_iris_grid( filename ) reflectivity_list.append(reflec) ######################################################################## # Step 4: Define the target grid as a pyresample AreaDefinition. # Defining target grid area_id = "hk1980_250km" description = ("A 250 m resolution rectangular grid " "centred at HKO and extending to 250 km " "in each direction in HK1980 easting/northing coordinates") proj_id = 'hk1980' projection = ('+proj=tmerc +lat_0=22.31213333333334 ' '+lon_0=114.1785555555556 +k=1 +x_0=836694.05 ' '+y_0=819069.8 +ellps=intl +towgs84=-162.619,-276.959,' '-161.764,0.067753,-2.24365,-1.15883,-1.09425 +units=m ' '+no_defs') x_size = 500 y_size = 500 area_extent = (587000, 569000, 1087000, 1069000) area_def_tgt = utils.get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) ############################################################################## # Step 5: Reproject the radar data from read_iris_grid() from Centered # Azimuthal # (source) projection to HK 1980 (target) projection. # Extracting the AreaDefinition of the source projection area_def_src = reflectivity_list[0].attrs['area_def'] # Reprojecting reproj_reflectivity_list = [] for reflec in reflectivity_list: reproj_reflec = grid_resample( reflec, area_def_src, area_def_tgt, coord_label=['easting', 'northing'] ) reproj_reflectivity_list.append(reproj_reflec) ############################################################################ # Step 6: Assigning reflectivity xarrays at the last two timestamps to # variables for use during ROVER QPF. xarray1 = reproj_reflectivity_list[-2] xarray2 = reproj_reflectivity_list[-1] initialising_time = pd.Timestamp.now() ########################################################### # Running ROVER and Semi-Lagrangian Advection # ------------------------------------------- # # 1. Concatenate two reflectivity xarrays along time dimension. # 2. Run ROVER, with the concatenated xarray as the input. # 3. Perform Semi-Lagrangian Advection using the motion fields from rover. # Combining the two reflectivity DataArrays # the order of the coordinate keys is now ['y', 'x', 'time'] # as opposed to ['time', 'x', 'y'] reflec_concat = xarray.concat([xarray1, xarray2], dim='time') # Rover motion_u, motion_v = rover( reflec_concat ) rover_time = pd.Timestamp.now() # Semi Lagrangian Advection reflectivity = sla( reflec_concat, motion_u, motion_v, steps=30 ) sla_time = pd.Timestamp.now() ############################################################## # Concatenating observed and forecasted reflectivities # ------------------------------------------------------- # # 1. Add forecasted reflectivity to reproj_reflectivity_list. # 2. Concatenate observed and forecasted reflectivity # xarray.DataArrays along the time dimension. reproj_reflectivity_list.append(reflectivity[1:, ...]) reflectivity = xarray.concat(reproj_reflectivity_list, dim='time') concat_time = pd.Timestamp.now() ############################################# # Generating radar reflectivity maps # ----------------------------------- # # Define the color scale and format of the plots # and plot using xarray.plot(). # # In this example, only hourly images will be plotted. # # Defining colour scale and format levels = [ -32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44, 47, 50, 53, 56, 58, 60, 62 ] cmap = matplotlib.colors.ListedColormap([ '#FFFFFF', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Defining the crs crs = area_def_tgt.to_cartopy_crs() # Generating a timelist for every hour timelist = [ (basetime + pd.Timedelta(minutes=60*i-6)) for i in range(4) ] # Obtaining the slice of the xarray to be plotted da_plot = reflectivity.sel(time=timelist) # Defining motion quivers qx = motion_u.coords['easting'].values[::5] qy = motion_u.coords['northing'].values[::5] qu = motion_u.values[::5, ::5] qv = motion_v.values[::5, ::5] # Defining coastlines hires = cfeature.GSHHSFeature( levels=[1], scale='h', edgecolor='k' ) # Plotting p = da_plot.plot( col='time', col_wrap=2, subplot_kws={'projection': crs}, cbar_kwargs={ 'extend': 'max', 'ticks': levels[1:], 'format': '%.3g' }, cmap=cmap, norm=norm ) for idx, ax in enumerate(p.axes.flat): ax.quiver(qx, qy, qu, qv, pivot='mid', regrid_shape=20) ax.add_feature(hires) # coastlines ax.gridlines() ax.set_title( "Reflectivity\n" f"Based @ {basetime.strftime('%H:%MH')}", loc='left', fontsize=9 ) ax.set_title( '' ) ax.set_title( f"{basetime.strftime('%Y-%m-%d')} \n" f"Valid @ {timelist[idx].strftime('%H:%MH')} ", loc='right', fontsize=9 ) plt.savefig( THIS_DIR + f"/../tests/outputs/rover-output-map-hk.png", dpi=300 ) radar_image_time = pd.Timestamp.now() ########################################################################## # Accumulating hourly rainfall for 3-hour forecast # ------------------------------------------------ # # Hourly accumulated rainfall is calculated every 30 minutes, the first # endtime is the basetime i.e. T+0min. # # #. Convert reflectivity in dBZ to rainrates in mm/h with dbz2rr(). # #. Changing time coordinates of xarray from start time to endtime. # #. Convert rainrates to rainfalls in 6 mins with rr2rf(). # #. Accumulate hourly rainfall every 30 minutes using multiple_acc(). # Convert reflectivity to rainrates rainrates = dbz2rr(reflectivity, a=58.53, b=1.56) # Converting the coordinates of xarray from start to endtime rainrates_endtime = rainrates.copy() rainrates_endtime.coords['time'] = \ [ pd.Timestamp(t) + pd.Timedelta(minutes=6) for t in rainrates_endtime.coords['time'].values ] # Convert rainrates to accumulated rainfalls every 6 minutes with rr2rf(). rainfalls = rr2rf(rainrates_endtime) # Accumulate hourly rainfall every 30 minutes acc_rf = multiple_acc( rainfalls, basetime, basetime+pd.Timedelta(hours=3) ) acc_time = pd.Timestamp.now() ####################################################################### # Plotting rainfall maps # --------------------------------------- # # Define the colour scheme and format and plot using xarray.plot(). # # In this example, only hourly images will be plotted. # # Defining the colour scheme levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = matplotlib.colors.ListedColormap([ '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Defining projection crs = area_def_tgt.to_cartopy_crs() # Defining zoom extent r = 64000 proj_site = xarray1.proj_site zoom = ( proj_site[0]-r, proj_site[0]+r, proj_site[1]-r, proj_site[1]+r ) # (x0, x1, y0, y1) # Defining times for plotting timelist = [basetime + pd.Timedelta(hours=i) for i in range(4)] # Obtaining xarray slice to be plotted da_plot = acc_rf.sel( easting=slice(zoom[0], zoom[1]), northing=slice(zoom[3], zoom[2]), time=timelist ) # Plotting p = da_plot.plot( col='time', col_wrap=2, subplot_kws={'projection': crs}, cbar_kwargs={ 'extend': 'max', 'ticks': levels, 'format': '%.3g' }, cmap=cmap, norm=norm ) for idx, ax in enumerate(p.axes.flat): ax.add_feature(hires) # using GSHHS coastlines defined previously ax.gridlines() ax.set_xlim(zoom[0], zoom[1]) ax.set_ylim(zoom[2], zoom[3]) ax.set_title( "Past Hour Rainfall\n" f"Based @ {basetime.strftime('%H:%MH')}", loc='left', fontsize=8 ) ax.set_title( '' ) ax.set_title( f"{basetime.strftime('%Y-%m-%d')} \n" f"Valid @ {timelist[idx].strftime('%H:%MH')} ", loc='right', fontsize=8 ) plt.savefig( THIS_DIR + f"/../tests/outputs/rainfall_hk.png", dpi=300 ) rf_image_time = pd.Timestamp.now() ############################################################################## # Extract the rainfall values at a specified location # ------------------------------------------------------------------ # # In this example, the rainfall values at the location is assumed # to be the same as the nearest gridpoint. # # 1. Read information regarding the rain gauge stations # into a pandas.DataFrame. # 2. Extract the rainfall values at the nearest gridpoint to location # for given times (in this example, 30 minute intervals). # 3. Store rainfall values over time in a pandas.DataFrame. # 4. Plot the time series of rainfall at different stations. # Getting rain gauge station coordinates df = pd.read_csv( os.path.join(THIS_DIR, "../tests/samples/hk_raingauge.csv"), usecols=[0, 1, 2, 3, 4] ) # Extract rainfall values at gridpoint closest to the # location specified for given timesteps and storing it # in pandas.DataFrame. rf_time = [] for time in acc_rf.coords['time'].values: rf = [] for index, row in df.iterrows(): rf.append(acc_rf.sel( time=time, northing=row[1], easting=row[2], method='nearest' ).values) rf_time.append(rf) rf_time = np.array(rf_time) station_rf = pd.DataFrame( data=rf_time, columns=df.iloc[:, 0], index=pd.Index( acc_rf.coords['time'].values, name='time' ) ) print(station_rf) # Plotting time series graph ax = station_rf.plot(title="Time Series of Hourly Accumulated Rainfall", grid=True) ax.set_ylabel("Hourly Accumulated Rainfall (mm)") plt.savefig(THIS_DIR+"/../tests/outputs/qpf_time_series.png") extract_time = pd.Timestamp.now() ###################################################################### # Checking run time of each component # -------------------------------------------------------------------- # print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"Rover time: {rover_time}") print(f"SLA time: {sla_time}") print(f"Concatenating time: {concat_time}") print(f"Plotting radar image time: {radar_image_time}") print(f"Accumulating rainfall time: {acc_time}") print(f"Plotting rainfall map time: {rf_image_time}") print(f"Extracting and plotting time series time: {extract_time}") print(f"Time to initialise: {initialising_time-start_time}") print(f"Time to run rover: {rover_time-initialising_time}") print(f"Time to perform SLA: {sla_time-rover_time}") print(f"Time to concatenate xarrays: {concat_time - sla_time}") print(f"Time to plot radar image: {radar_image_time - concat_time}") print(f"Time to accumulate rainfall: {acc_time - radar_image_time}") print(f"Time to plot rainfall maps: {rf_image_time-acc_time}") print(f"Time to extract and plot time series: {extract_time-rf_image_time}")