""" PQPF (Hong Kong) ======================================================== This example demonstrates how to perform operational PQPF up to three hours from raingauge and radar data, using data from Hong Kong. """ ########################################################### # Definitions # -------------------------------------------------------- # import os import numpy as np import pandas as pd from pyresample import utils import xarray import cartopy.feature as cfeature import cartopy.crs as ccrs import matplotlib import imageio import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm, LinearSegmentedColormap from swirlspy.rad.iris import read_iris_grid from swirlspy.qpe.utils import dbz2rr, rr2rf, locate_file, timestamps_ending from swirlspy.qpe.utils import temporal_interp, multiple_acc from swirlspy.obs.rain import Rain from swirlspy.qpf.rover import rover from swirlspy.qpf.sla import sla from swirlspy.qpf.rover import rover from swirlspy.core.resample import grid_resample plt.switch_backend('agg') THIS_DIR = os.getcwd() os.chdir(THIS_DIR) start_time = pd.Timestamp.now() ############################################################# # Initialising # --------------------------------------------------- # # This section demonstrates extracting # radar reflectivity data. # # Step 1: Define a basetime. # # Supply basetime basetime = pd.Timestamp('201902190800') ############################################################################## # Step 2: Using basetime, generate timestamps of desired radar files # timestamps_ending() and locate files using locate_file(). # Obtain radar files dir = THIS_DIR + '/../tests/samples/iris/ppi' located_files = [] radar_ts = timestamps_ending( basetime, duration=pd.Timedelta(minutes=60) ) for timestamp in radar_ts: located_files.append(locate_file(dir, timestamp)) ############################################################################## # Step 3: Read data from radar files into xarray.DataArray # using read_iris_grid(). reflectivity_list = [] # stores reflec from read_iris_grid() for filename in located_files: reflec = read_iris_grid( filename ) reflectivity_list.append(reflec) ######################################################################## # Step 4: Define the target grid as a pyresample AreaDefinition. # Defining target grid area_id = "hk1980_250km" description = ("A 250 m resolution rectangular grid " "centred at HKO and extending to 250 km " "in each direction in HK1980 easting/northing coordinates") proj_id = 'hk1980' projection = ('+proj=tmerc +lat_0=22.31213333333334 ' '+lon_0=114.1785555555556 +k=1 +x_0=836694.05 ' '+y_0=819069.8 +ellps=intl +towgs84=-162.619,-276.959,' '-161.764,0.067753,-2.24365,-1.15883,-1.09425 +units=m ' '+no_defs') x_size = 500 y_size = 500 area_extent = (587000, 569000, 1087000, 1069000) area_def_tgt = utils.get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) ############################################################################## # Step 5: Reproject the radar data from read_iris_grid() from Centered # Azimuthal (source) projection to HK 1980 (target) projection. # # Extracting the AreaDefinition of the source projection area_def_src = reflectivity_list[0].attrs['area_def'] # Reprojecting reproj_reflectivity_list = [] for reflec in reflectivity_list: reproj_reflec = grid_resample( reflec, area_def_src, area_def_tgt, coord_label=['easting', 'northing'] ) reproj_reflectivity_list.append(reproj_reflec) ############################################################################ # Step 6: Assigning reflectivity xarrays at the last three timestamps to # variables for use during ROVER QPF. xarray1 = reproj_reflectivity_list[-3] xarray2 = reproj_reflectivity_list[-2] xarray3 = reproj_reflectivity_list[-1] initialising_time = pd.Timestamp.now() ########################################################### # Running ROVER and Semi-Lagrangian Advection # ------------------------------------------- # # 1. Concatenate required reflectivity xarrays along time dimension. # 2. Run ROVER on all members, with the concatenated xarray as the input. # 3. Store motion field xarrays as a list. # 4. Perform Semi-Lagrangian Advection on all members using the motion fields # from rover. # 5. Store forecasted reflectivities as list. # Combining two reflectivity DataArrays # the order of the coordinate keys is now ['y', 'x', 'time'] # as opposed to ['time', 'x', 'y'] reflec_concat_6min = xarray.concat([xarray2, xarray3], dim='time') reflec_concat_12min = xarray.concat([xarray1, xarray3], dim='time') # Running rover on 4 members # Mem-1 u1, v1 = rover( reflec_concat_6min, start_level=1, max_level=7, sigma=2.5 ) # Mem-2 u2, v2 = rover( reflec_concat_12min, start_level=2, max_level=7, sigma=2.5 ) # Rover-A u3, v3 = rover( reflec_concat_6min ) # Mem-4 u4, v4 = rover( reflec_concat_12min ) # Storing motion fields for quiver plot motion_list = [[u1, v1], [u2, v2], [u3, v3], [u4, v4]] rover_time = pd.Timestamp.now() # Running SLA on all members z1 = sla( reflec_concat_6min, u1, v1, steps=30 ) z2 = sla( reflec_concat_12min, u2, v2, steps=15 ) z3 = sla( reflec_concat_6min, u3, v3, steps=30 ) z4 = sla( reflec_concat_12min, u4, v4, steps=15 ) # appending all reflectivities to list z_sla_list = [z1, z2, z3, z4] sla_time = pd.Timestamp.now() ############################################################## # Concatenating observed and forecasted reflectivities # -------------------------------------------------------- # # 1. Add forecasted reflectivity to reproj_reflectivity_list. # 2. Concatenate observed and forecasted reflectivity # xarray.DataArrays along the time dimension. # 3. Concatenate reflectivities of different members along # a fourth dimension. z_cat_list = [] for reflectivity in z_sla_list: z_all = reproj_reflectivity_list + [reflectivity[1:, ...]] z_cat = xarray.concat(z_all, dim='time') z_cat_list.append(z_cat) # Concatenating different members z_ens_6min = xarray.concat( [z_cat_list[0], z_cat_list[2]], xarray.IndexVariable('member', ['Mem-1', 'Mem-3']) ) z_ens_12min = xarray.concat( [z_cat_list[1], z_cat_list[3]], xarray.IndexVariable('member', ['Mem-2', 'Mem-4']) ) concat_time = pd.Timestamp.now() ########################################################################## # Accumulating hourly rainfall for 3-hour forecast # ------------------------------------------------ # # Hourly accumulated rainfall is calculated every 30 minutes, the first # endtime is the basetime i.e. T+0min. # # | Step 1: Convert reflectivity in dBZ to rainrates in mm/h with dbz2rr(). # | Step 2: Replacing time coordinates with end times instead of start times. # | Step 3: Interpolate rainrates temporally to ensure that rainrates are # | equally spaced along the time axis. # | Step 4: Convert rainrates to rainfalls in 6 and 12 minutes with rr2rf(). # 6 minute ensembles rainrates_ens_6min = dbz2rr(z_ens_6min, a=58.53, b=1.56) rainrates_ens_6min_endtime = rainrates_ens_6min.copy() rainrates_ens_6min_endtime.coords['time'] = \ [ pd.Timestamp(t) + pd.Timedelta(minutes=6) for t in rainrates_ens_6min_endtime.coords['time'].values ] rainfalls_ens_6min = rr2rf(rainrates_ens_6min_endtime) # 12 minute ensembles rainrates_ens_12min = dbz2rr(z_ens_12min, a=58.53, b=1.56) rainrates_ens_12min_endtime = rainrates_ens_12min.copy() rainrates_ens_12min_endtime.coords['time'] = \ [ pd.Timestamp(t) + pd.Timedelta(minutes=12) for t in rainrates_ens_12min_endtime.coords['time'].values ] rainrates_ens_12min_interp = temporal_interp( rainrates_ens_12min, pd.Timestamp('201902190700'), pd.Timestamp('201902191100') ) rainfalls_ens_12min = rr2rf(rainrates_ens_12min_interp) ###################################################################### # Step 3: Compute hourly accumulated rainfall every 30 minutes. acc_rf_6min = multiple_acc( rainfalls_ens_6min, basetime, basetime+pd.Timedelta(hours=3) ) acc_rf_12min = multiple_acc( rainfalls_ens_12min, basetime, basetime+pd.Timedelta(hours=3) ) acc_time = pd.Timestamp.now() ###################################################################### # Calculating Probability Exceeding Threshold # ---------------------------------------------- # # In this example, thresholds are 0.5mm, 5mm, # 10mm, 30mm, 50mm and 70 mm. # # Probabilities are 0%, 25%, 50%, 75% and 100%, as there are # four members. # # Steps: # # 1. Define threshold. # 2. Concatenate rainfalls from 6 minute and 12 minute ensembles # along the member dimension. # 3. Use a loop to calculate the probability of exceeding threshold # for each gridcell and store results in list. # 4. Concatenate the contents of the list. Result is an xarray with # dimensions (threshold, time, y, x). # 5. Plot the results using xarray.plot(). In this example, # only the probability exceeding 0.5mm rainfall # every hour will be plotted. # Define threshold threshold = [0.5, 5., 10., 30., 50., 70.] # Concatenating rainfalls_ens_6min and rainfalls_ens_12min acc_rf = xarray.concat( [acc_rf_6min, acc_rf_12min], dim='member' ) # Define list to store probabilities of exceeding rainfall thresholds # List corresponds to threshold prob_list = [] # Calculate probability for th in threshold: bool_forecast = acc_rf >= th count = bool_forecast.sum(dim='member') prob = count/len(bool_forecast.coords['member'].values) * 100 prob_list.append(prob) # Generate coordinate xarray for threshold th_xarray = xarray.IndexVariable( 'threshold', threshold ) # concatenate prob_rainfall = xarray.concat( prob_list, dim=th_xarray ) prob_rainfall.attrs['long_name'] = "Probability of Exceeding Threshold" prob_rainfall.attrs['units'] = "%" # Plot the results # Extracting the crs crs = area_def_tgt.to_cartopy_crs() # Defining cmap cmap = LinearSegmentedColormap.from_list( 'custom blue', ['#FFFFFF', '#000099'] ) # Obtaining xarray slices to be plotted threshold_list = [0.5] timelist = [basetime + pd.Timedelta(hours=i) for i in range(4)] da_plot = prob_rainfall.sel( threshold=threshold_list, time=timelist ) # Defining coastlines hires = cfeature.GSHHSFeature( levels=[1], scale='h', edgecolor='k' ) for th in threshold_list: # Plotting p = da_plot.sel(threshold=th).plot( col='time', col_wrap=2, subplot_kws={'projection': crs}, cbar_kwargs={ 'ticks': [0, 25, 50, 75, 100], 'format': '%.3g' }, cmap=cmap ) for idx, ax in enumerate(p.axes.flat): ax.add_feature(hires) # coastlines ax.gridlines() # gridlines ax.set_title( f"% Exceeding {th}mm rainfall\n" f"Based @ {basetime.strftime('%H:%MH')}", loc='left', fontsize=8 ) ax.set_title( '' ) ax.set_title( f"{basetime.strftime('%Y-%m-%d')} \n" f"Valid @ {timelist[idx].strftime('%H:%MH')} ", loc='right', fontsize=8 ) plt.savefig( THIS_DIR + f"/../tests/outputs/p_{th}.png", dpi=300 ) prob_time = pd.Timestamp.now() ############################################################################### # Rainfall percentiles # ---------------------------- # # 1. Using xarray.DataArray.mean(), # calculate the mean rainfall of all gridpoints. # 2. Using xarray.DataArray.min(), # find the minimum rainfall of all gridpoints. # 3. Using xarray.DataArray.max(), # find the maximum rainfall of all gridpoints. # 4. Using xarray.DataArray.quantile() # find the 25th, 50th and 75th percentile rainfall # of all gridpoints. # 5. Concatenate rainfall along percentile dimension. # 6. Plot results using xarray.plot(). In this example # only the maximum percentile rainfall # every hour will be plotted. # mean mean_rainfall = acc_rf.mean(dim='member', keep_attrs=True) # max max_rainfall = acc_rf.max(dim='member', keep_attrs=True) # min min_rainfall = acc_rf.min(dim='member', keep_attrs=True) # quartiles q_rainfall = acc_rf.quantile( [.25, .5, .75], dim='member', interpolation='nearest', keep_attrs=True) # generate index percentile = xarray.IndexVariable( 'percentile', ['Minimum', '25th Percentile', '50th Percentile', 'Mean', '75th Percentile', 'Maximum'] ) # concatenating p_rainfall = xarray.concat( [min_rainfall, q_rainfall.sel(quantile=.25).squeeze().drop('quantile'), q_rainfall.sel(quantile=.50).squeeze().drop('quantile'), mean_rainfall, q_rainfall.sel(quantile=.75).squeeze().drop('quantile'), max_rainfall], dim=percentile ) p_rainfall.attrs['long_name'] = "Hourly Accumulated Rainfall" p_rainfall.attrs['units'] = "mm" # Defining levels # Defining the colour scheme levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = matplotlib.colors.ListedColormap([ '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Obtaining xarray slices to be plotted plot_positions = ['Maximum'] timelist = [basetime + pd.Timedelta(hours=i) for i in range(4)] da_plot = p_rainfall.sel(percentile=plot_positions, time=timelist) for pos in plot_positions: # Plotting p = da_plot.sel(percentile=pos).plot( col='time', col_wrap=2, subplot_kws={'projection': crs}, cbar_kwargs={ 'ticks': levels, 'format': '%.3g' }, cmap=cmap, norm=norm ) for idx, ax in enumerate(p.axes.flat): ax.add_feature(hires) # using GSHHS coastlines defined previously ax.gridlines() ax.set_title( f"{pos} Radar-Based Rainfall\n" f"Based @ {basetime.strftime('%H:%MH')}", loc='left', fontsize=8 ) ax.set_title( '' ) ax.set_title( f"{basetime.strftime('%Y-%m-%d')} \n" f"Valid @ {timelist[idx].strftime('%H:%MH')} ", loc='right', fontsize=8 ) position = pos.split(" ")[0] plt.savefig( THIS_DIR + f"/../tests/outputs/rainfall_{position}.png", dpi=300 ) ptime = pd.Timestamp.now() ############################################################################## # Extract the rainfall values at a specified location # ------------------------------------------------------------------ # # In this example, the rainfall values at the location is assumed # to be the same as the nearest gridpoint. # # 1. Read information regarding the radar stations into a pandas.DataFrame. # 2. Extract the rainfall values at the nearest gridpoint to location # for given timesteps (in this example, 30 minute intervals). # 3. Store rainfall values over time in an xarray.DataArray. # 4. Plot the time series of rainfall with boxplots at desired station. # In this case, the 15th percentile member is plotted. # Getting radar station coordinates df = pd.read_csv( os.path.join(THIS_DIR, "../tests/samples/hk_raingauge.csv"), usecols=[0, 1, 2, 3, 4] ) # Extract rainfall values at gridpoint closest to the # location specified for given timesteps and storing it # in xarray.DataArray. station_rf_list = [] station_name = [] for index, row in df.iterrows(): station_rf_list.append(p_rainfall.sel( northing=row[1], easting=row[2], method='nearest' ).drop('northing').drop('easting')) station_name.append(row[0]) station_name_index = xarray.IndexVariable( 'ID', station_name ) station_rf = xarray.concat( station_rf_list, dim=station_name_index ) # Extracting the 15th ranked station xr_15_percentile = station_rf.quantile( .15, dim='ID', interpolation='nearest').drop('quantile') # Plotting _, tax = plt.subplots(figsize=(20, 15)) plt.plot( np.arange(1, len(xr_15_percentile.coords['time'].values) + 1), xr_15_percentile.loc['Mean'].values, 'ko-' ) # plot line # Storing percentiles as dictionary to call ax.bxp for boxplot stats_list = [] for i in range(len(xr_15_percentile.coords['time'].values)): stats = { 'med': xr_15_percentile.loc['50th Percentile'].values[i], 'q1': xr_15_percentile.loc['25th Percentile'].values[i], 'q3': xr_15_percentile.loc['75th Percentile'].values[i], 'whislo': xr_15_percentile.loc['Maximum'].values[i], 'whishi': xr_15_percentile.loc['Minimum'].values[i] } stats_list.append(stats) # Plot boxplot tax.bxp( stats_list, showfliers=False ) # Labels xcoords = xr_15_percentile.coords['time'].values xticklabels = [pd.to_datetime(str(t)).strftime("%-H:%M") for t in xcoords] tax.set_xticklabels(xticklabels) tax.xaxis.set_tick_params(labelsize=20) tax.yaxis.set_tick_params(labelsize=20) plt.title('Time Series of Hourly Accumulated Rainfall', fontsize=25) plt.ylabel("Hourly Accumulated Rainfall [mm]", fontsize=22) plt.xlabel("Time", fontsize=18) plt.savefig(THIS_DIR+"/../tests/outputs/pqpf_time_series.png") extract_time = pd.Timestamp.now() ###################################################################### # Checking run time of each component # -------------------------------------------------------------------- # print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"Rover time: {rover_time}") print(f"SLA time: {sla_time}") print(f"Concatenating time: {concat_time}") print(f"Accumulating rainfall time: {acc_time}") print( "Calculate and plot probability exceeding threshold: " f"{prob_time}" ) print( f"Plotting rainfall maps: {ptime}" ) print(f"Extracting and plotting time series time: {extract_time}") print(f"Time to initialise: {initialising_time-start_time}") print(f"Time to run rover: {rover_time-initialising_time}") print(f"Time to perform SLA: {sla_time-rover_time}") print(f"Time to concatenate xarrays: {concat_time - sla_time}") print(f"Time to accumulate rainfall: {acc_time - concat_time}") print( "Time to calculate and plot probability exceeding threshold: " f"{prob_time-acc_time}" ) print(f"Time to plot rainfall maps: {ptime-prob_time}") print( f"Time to extract station data and plot time series: " f"{extract_time-ptime}" )