.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/hail.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here <sphx_glr_download_auto_examples_hail.py>` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_hail.py: Hail Nowcast (Hong Kong) =========================== This example demonstrates a rule-based hail nowcast for the next 30 minutes, using data from Hong Kong. .. GENERATED FROM PYTHON SOURCE LINES 10-15 Setup ----------------------------------------------------------------------- Import all required modules and methods: .. GENERATED FROM PYTHON SOURCE LINES 15-37 .. code-block:: default import os import numpy as np import pandas as pd import xarray as xr from pyresample import utils import cartopy.feature as cf import cartopy.crs as ccrs from cartopy.io import shapereader import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import ListedColormap, BoundaryNorm from swirlspy.qpf import rover from swirlspy.rad import read_iris_grid, calc_vil from swirlspy.qpe.utils import timestamps_ending, locate_file from swirlspy.core.resample import grid_resample from swirlspy.object import get_labeled_frame, fit_ellipse from swirlspy.utils import standardize_attr, FrameType matplotlib.use('agg') .. GENERATED FROM PYTHON SOURCE LINES 38-40 Define the working directories: .. GENERATED FROM PYTHON SOURCE LINES 40-47 .. code-block:: default # working_dir = os.path.join(os.getcwd(), 'swirlspy/examples') working_dir = os.getcwd() radar_dir = os.path.abspath( os.path.join(working_dir, '../tests/samples/iris/3d/') ) .. GENERATED FROM PYTHON SOURCE LINES 48-50 Define the basemap: .. GENERATED FROM PYTHON SOURCE LINES 50-74 .. code-block:: default # define the plot function def plot_base(ax: plt.Axes, extents: list, crs: ccrs.Projection): # fake the ocean color ax.imshow( np.tile(np.array([[[178, 208, 254]]], dtype=np.uint8), [2, 2, 1]), origin='upper', transform=crs, extent=extents, zorder=-1 ) # coastline, province and state, color ax.add_feature( map_with_province, facecolor=cf.COLORS['land'], edgecolor='none', zorder=0 ) # overlay coastline, province and state without color ax.add_feature( map_with_province, facecolor='none', edgecolor='gray', linewidth=0.5 ) ax.set_title('') # Logging start_time = pd.Timestamp.now() .. GENERATED FROM PYTHON SOURCE LINES 75-78 Loading radar data ----------------------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 78-108 .. code-block:: default # Specify the basetime basetime = pd.Timestamp('201403301930') # Generate timestamps for the current and past 6 minute # radar scan timestamps = timestamps_ending( basetime, duration=pd.Timedelta(6, 'm'), exclude_end=False ) # Locating the files located_files = [] for timestamp in timestamps: located_files.append(locate_file(radar_dir, timestamp)) # Reading the radar data reflectivity_list = [] for filename in located_files: reflectivity = read_iris_grid(filename) reflectivity_list.append(reflectivity) # Standardize reflectivity xarrays raw_frames = xr.concat(reflectivity_list, dim='time').sortby(['y'], ascending=False) standardize_attr(raw_frames, frame_type=FrameType.dBZ) initialising_time = pd.Timestamp.now() .. rst-class:: sphx-glr-script-out .. code-block:: pytb Traceback (most recent call last): File "/tmp/build/docs/swirlspy/swirlspy/examples/hail.py", line 98, in <module> reflectivity = read_iris_grid(filename) File "/tmp/build/docs/swirlspy/swirlspy/rad/_iris.py", line 407, in read_iris_grid raise ValueError("Invalid file") from e ValueError: Invalid file .. GENERATED FROM PYTHON SOURCE LINES 109-117 Identify regions of interest for hail ----------------------------------------------------------------------- Hail has a chance of occurring when two phenomena co-happen: #. The 58 dBZ echo top exceeds 3 km. #. The Vertically Integrated Liquid (VIL) up to 2 km is less than 5mm. .. GENERATED FROM PYTHON SOURCE LINES 117-138 .. code-block:: default # getting radar scan for basetime reflectivity = raw_frames.sel(time=basetime) # maximum reflectivity at elevations > 3km ref_3km = reflectivity.sel( height=slice(3000, None) ).max(dim='height', keep_attrs=True) # 58 dBZ echo top exceeds 3km cond_1 = ref_3km > 58 # vil up to 2km vil_2km = calc_vil(reflectivity.sel(height=slice(1000, 2000))) # VIL up 2km is less than 5mm cond_2 = vil_2km < 5 # Region of interest for hail hail = xr.ufuncs.logical_and(cond_1, cond_2) .. GENERATED FROM PYTHON SOURCE LINES 139-142 The identified regions are then labeled and fitted with minimum enclosing ellipses. .. GENERATED FROM PYTHON SOURCE LINES 142-156 .. code-block:: default # label image # image is binary so any threshold between 0 and 1 works # define minimum size as 4e6 m^2 or 4 km^2 labeled_hail, uids = get_labeled_frame(hail, 0.5, min_size=4e6) # fit ellipses to regions of interest ellipse_list = [] for uid in uids: ellipse, _ = fit_ellipse(labeled_hail == uid) ellipse_list.append(ellipse) identify_time = pd.Timestamp.now() .. GENERATED FROM PYTHON SOURCE LINES 157-166 Extrapolation of hail region ----------------------------------------------------------------------- First, we obtain the xarray.DataArray to generate the motion field. In this example, we generate the motion field from two consecutive 3km CAPPI radar scans closest to basetime. .. GENERATED FROM PYTHON SOURCE LINES 166-170 .. code-block:: default # Select radar data at 3km frames = raw_frames.sel(height=3000).drop('height') .. GENERATED FROM PYTHON SOURCE LINES 171-173 Obtain the motion field by ROVER .. GENERATED FROM PYTHON SOURCE LINES 173-179 .. code-block:: default # ROVER motion = rover(frames) motion_time = pd.Timestamp.now() .. GENERATED FROM PYTHON SOURCE LINES 180-185 Next, we extract the motion vector at the centroid of each ellipse, and calculate the displacement of the ellipse after 30 minutes. Since the distance is expressed in pixels, we need to convert the distance of the motion vector to grid units (in this case, meters). .. GENERATED FROM PYTHON SOURCE LINES 185-223 .. code-block:: default # getting meters per pixel area_def = reflectivity.attrs['area_def'] x_d = area_def.pixel_size_x y_d = area_def.pixel_size_y # time ratio # time ratio between nowcast interval and unit time time_ratio = pd.Timedelta(30, 'm') / pd.Timedelta(6, 'm') ellipse30_list = [] for ellipse in ellipse_list: # getting motion in pixels/6 minutes pu = motion[0].sel(x=ellipse['center'][0], y=ellipse['center'][1], method='nearest') pv = motion[1].sel(x=ellipse['center'][0], y=ellipse['center'][1], method='nearest') # converting to meters / 6 minutes u = x_d * pu v = y_d * pv # get displacement in 30 minutes dcenterx = u * time_ratio dcentery = v * time_ratio # get new position of ellipse after 30 minutes x30 = ellipse['center'][0] + dcenterx y30 = ellipse['center'][1] + dcentery # get new ellipse, only the center is changed ellipse30 = ellipse.copy() ellipse30['center'] = (x30, y30) ellipse30_list.append(ellipse30) extrapolate_time = pd.Timestamp.now() .. GENERATED FROM PYTHON SOURCE LINES 224-227 Visualisation ----------------------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 227-360 .. code-block:: default # Defining figure fig = plt.figure(figsize=(12, 6.5)) # number of rows and columns in plot nrows = 2 ncols = 1 # Defining the crs crs = area_def.to_cartopy_crs() # Load the shape of Hong Kong map_shape_file = os.path.abspath(os.path.join( working_dir, '../tests/samples/shape/hk_tms_aeqd.shp' )) # coastline and province map_with_province = cf.ShapelyFeature( list(shapereader.Reader(map_shape_file).geometries()), area_def.to_cartopy_crs() ) # Defining extent x = labeled_hail.coords['x'].values y = labeled_hail.coords['y'].values x_d = x[1] - x[0] y_d = y[1] - y[0] extents = [x[0], y[0], x[-1], y[-1]] # Defining ellipse patches def gen_patches(lst, ls='-'): patch_list = [] for ellipse in lst: patch = matplotlib.patches.Arc( ellipse['center'], ellipse['b'] * 2, ellipse['a'] * 2, angle=ellipse['angle'], ls=ls ) patch_list.append(patch) return patch_list # 1. Plotting maximum reflectivity above 3km # Define color scheme # Defining colour scale and format. levels = [ -32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44, 47, 50, 53, 56, 58, 60, 62 ] cmap = ListedColormap([ '#FFFFFF00', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) ax = fig.add_subplot(ncols, nrows, 1, projection=crs) plot_base(ax, extents, crs) ref_3km.where(ref_3km > levels[1]).plot( ax=ax, cmap=cmap, norm=norm, extend='max', cbar_kwargs={ 'ticks': levels[1:], 'format': '%.3g', 'fraction': 0.046, 'pad': 0.04 } ) patches = gen_patches(ellipse_list) for patch in patches: ax.add_patch(patch) patches = gen_patches(ellipse30_list, ls='--') for patch in patches: ax.add_patch(patch) ax.set_title('MAX_REF >= 3KM') # 2. Plotting VIL up to 2km levels = [ 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 15, 20, 25, 30, 32, 34 ] cmap = matplotlib.colors.ListedColormap([ '#FFFFFF', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) ax = fig.add_subplot(ncols, nrows, 2, projection=crs) plot_base(ax, extents, crs) vil_2km.where(vil_2km > levels[1]).plot( cmap=cmap, norm=norm, ax=ax, extend='max', cbar_kwargs={ 'ticks': levels[1:], 'format': '%.3g', 'fraction': 0.046, 'pad': 0.04 } ) ax.set_title('VIL <= 2km') patches = gen_patches(ellipse_list) for patch in patches: ax.add_patch(patch) patches = gen_patches(ellipse30_list, ls='--') for patch in patches: ax.add_patch(patch) suptitle1 = "Hail Nowcast Tracks" suptitle2 = basetime.strftime('%Y-%m-%d') suptitle3 = (f"Based @ {basetime.strftime('%H:%MH')}\n" f"Valid @ {(basetime + pd.Timedelta(30, 'm')).strftime('%H:%MH')}") fig.text(0., 0.93, suptitle1, va='top', ha='left', fontsize=16) fig.text(0.57, 0.93, suptitle2, va='top', ha='center', fontsize=16) fig.text(0.90, 0.93, suptitle3, va='top', ha='right', fontsize=16) plt.tight_layout() plt.savefig( working_dir + f"/../tests/outputs/hail.png", dpi=300 ) visualise_time = pd.Timestamp.now() .. GENERATED FROM PYTHON SOURCE LINES 361-364 Checking run time of each component ----------------------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 364-379 .. code-block:: default print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"Identify time: {identify_time}") print(f"Motion field time: {motion_time}") print(f"Extrapolate time: {extrapolate_time}") print(f"Visualise time: {visualise_time}") print(f"Time to initialise: {initialising_time - start_time}") print(f"Time to identify hail regions: {identify_time - initialising_time}") print(f"Time to generate motion field: {motion_time - identify_time}") print(f"Time to extrapolate: {extrapolate_time - motion_time}") print(f"Time to visualise: {visualise_time - extrapolate_time}") print(f"Total: {visualise_time - start_time}") .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.006 seconds) .. _sphx_glr_download_auto_examples_hail.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: hail.py <hail.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: hail.ipynb <hail.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_