.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/qpe_hk.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_qpe_hk.py: QPE (Hong Kong) ==================================================== This example demonstrates how to perform QPE, using raingauge and radar data from Hong Kong. .. GENERATED FROM PYTHON SOURCE LINES 10-13 Definitions -------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 13-43 .. code-block:: default import os import time import tarfile import numpy as np import pandas as pd import copy import xarray import scipy import pyproj import matplotlib from matplotlib.colors import BoundaryNorm import matplotlib.pyplot as plt from PIL import Image from pyresample import utils from cartopy.io import shapereader from sklearn.gaussian_process import kernels from swirlspy.obs import Rain from swirlspy.rad.iris import read_iris_grid from swirlspy.core.resample import grid_resample from swirlspy.qpe.rfmap import rg_interpolate, comp_qpe, show_raingauge from swirlspy.qpe.utils import timestamps_ending, locate_file, dbz2rr, rr2rf, \ temporal_interp, acc plt.switch_backend('agg') THIS_DIR = os.getcwd() os.chdir(THIS_DIR) .. GENERATED FROM PYTHON SOURCE LINES 44-51 Initialising ----------------------------------------------------------------- This section demonstrates extracting raingauge and radar data. Step 1: Defining an end-time for accumulating rainfall. .. GENERATED FROM PYTHON SOURCE LINES 51-55 .. code-block:: default acctime = pd.Timestamp('20190420150000').floor('min') acctime_str = acctime.strftime('%Y%m%d%H%M') .. GENERATED FROM PYTHON SOURCE LINES 56-58 Step 2: Setting up directories for raingauge and radar files. .. GENERATED FROM PYTHON SOURCE LINES 58-62 .. code-block:: default rad_dir = THIS_DIR + '/../tests/samples/iris/' rg_dir = THIS_DIR + '/../tests/samples/rfmap/' .. GENERATED FROM PYTHON SOURCE LINES 63-65 Step 3: Generating timestamps and pattern for both radar and raingauge files. .. GENERATED FROM PYTHON SOURCE LINES 65-91 .. code-block:: default # Timestamps of raingauges rg_timestrings = timestamps_ending( acctime + pd.Timedelta(minutes=5), duration=pd.Timedelta(hours=1), interval=pd.Timedelta(minutes=5) ) # Raingauge pattern rg_pattern = ['rf5m_20'+ts for ts in rg_timestrings] # Finding time nearest radar file # to accumulation end time minute = acctime.minute nearest_6min = acctime.minute // 6 * 6 nearest_rad_timestamp = pd.Timestamp( acctime_str[:-2]+f'{nearest_6min:02}' ) rad_timestrings = timestamps_ending( nearest_rad_timestamp, duration=pd.Timedelta(hours=1), interval=pd.Timedelta(minutes=6) ) .. GENERATED FROM PYTHON SOURCE LINES 92-94 Step 4: Extracting raingauge and radar files from their respective directories. .. GENERATED FROM PYTHON SOURCE LINES 94-103 .. code-block:: default located_rg_files = [] for pat in rg_pattern: located_rg_files.append(locate_file(rg_dir, pat)) located_radar_files = [] for ts in rad_timestrings: located_radar_files.append(locate_file(rad_dir, ts)) .. GENERATED FROM PYTHON SOURCE LINES 104-109 Step 5: Read data from raingauge files into a Rain object. Coordinates are geodetic, following that in the files. There is some noise in the raingauge, so known problematic stations are filtered away. .. GENERATED FROM PYTHON SOURCE LINES 109-122 .. code-block:: default rg_object_geodetic = Rain( located_rg_files, 'geodetic', duration=pd.Timedelta(minutes=5), NAN=[3276.7, 32767] ) bad_stations = ['N25', 'SSP', 'D25', 'TWN', 'TMS', 'N14'] rg_object_geodetic = rg_object_geodetic.remove_bad_stations( bad_stations ) .. GENERATED FROM PYTHON SOURCE LINES 123-126 Step 6: Read radar files into xarray.DataArrays. The data in the files are already in Cartesian Coordinates, in the Centered Azimuthal Projection. .. GENERATED FROM PYTHON SOURCE LINES 126-136 .. code-block:: default reflec_list = [] for file in located_radar_files: reflec = read_iris_grid( file ) reflec_list.append(reflec) .. rst-class:: sphx-glr-script-out .. code-block:: pytb Traceback (most recent call last): File "/tmp/build/docs/swirlspy/swirlspy/examples/qpe_hk.py", line 130, in file File "/tmp/build/docs/swirlspy/swirlspy/rad/_iris.py", line 407, in read_iris_grid raise ValueError("Invalid file") from e ValueError: Invalid file .. GENERATED FROM PYTHON SOURCE LINES 137-142 Data Reprojection --------------------------------------------------------------------- This section demonstrates the reprojection of extracted raingauge and radar data to a user-defined grid. .. GENERATED FROM PYTHON SOURCE LINES 144-145 Step 1: Define the target grid as a pyresample AreaDefinition. .. GENERATED FROM PYTHON SOURCE LINES 145-167 .. code-block:: default # Defining target grid area_id = "hk1980_grid" description = ("A grid centered about Hong Kong with a resolution " "880m in the x-direction and 660m in the y-direction " "HK1980 easting/northing coordinates") proj_id = 'hk1980' projection = ('+proj=tmerc +lat_0=22.31213333333334 ' '+lon_0=114.1785555555556 +k=1 +x_0=836694.05 ' '+y_0=819069.8 +ellps=intl +towgs84=-162.619,-276.959,' '-161.764,0.067753,-2.24365,-1.15883,-1.09425 +units=m ' '+no_defs') x_size = 1000 y_size = 1000 area_extent = (792000, 796000, 880000, 862000) area_def = utils.get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) .. GENERATED FROM PYTHON SOURCE LINES 168-172 Step 2: Convert coordinates of raingauge object to desired projection. In this example, the desired projection is HK1980. This can be achieved by the .reproject() method of the Rain object. .. GENERATED FROM PYTHON SOURCE LINES 172-178 .. code-block:: default inProj = pyproj.Proj(init="epsg:4326") outProj = pyproj.Proj(area_def.proj_str) rg_object = rg_object_geodetic.reproject(inProj, outProj, "HK1980") .. GENERATED FROM PYTHON SOURCE LINES 179-182 Step 3: Regrid radar reflectivity from Centered Azimuthal Projection to HK1980. .. GENERATED FROM PYTHON SOURCE LINES 182-194 .. code-block:: default reproj_reflec_list = [] for reflec in reflec_list: reproj_reflec = grid_resample( reflec, reflec.attrs['area_def'], area_def, coord_label=['easting', 'northing'] ) reproj_reflec_list.append(reproj_reflec) reflectivity = xarray.concat(reproj_reflec_list, dim='time') .. GENERATED FROM PYTHON SOURCE LINES 195-203 Accumulating and interpolating rainfall ----------------------------------------------------------------- Interpolate rainfall recorded by raingauges into the user-defined grid and accumulate radar rainfall over an hour after making the necessary adjustments. .. GENERATED FROM PYTHON SOURCE LINES 205-211 Step 1: Interpolate Rain object to user-defined grid. In this example, ordinary kriging is used. Using kriging may require further customisation of certain parameters. .. GENERATED FROM PYTHON SOURCE LINES 211-233 .. code-block:: default # Perform some primitive quality control upperQ = np.quantile(rg_object.rainfall, .75) lowerQ = np.quantile(rg_object.rainfall, .25) iqr = upperQ - lowerQ noisePos = np.logical_or(rg_object.rainfall > upperQ + 1.5*iqr, rg_object.rainfall < lowerQ - 1.5*iqr) alpha = np.where(noisePos, 1e4, 1e-10) kernel = kernels.Matern() interpolated_rg = rg_interpolate( rg_object, area_def, 'ordinary_kriging', coord_label=['easting', 'northing'], kernel=kernel, alpha=alpha, n_restarts_optimizer=20 ) .. GENERATED FROM PYTHON SOURCE LINES 234-237 Step 2: Convert to radar reflectivity to rainrates, interpolate rainrates to times of raingauges, and convert to rainfalls accumulated every 5 minutes. .. GENERATED FROM PYTHON SOURCE LINES 237-257 .. code-block:: default rainrates = dbz2rr(reflectivity, a=58.53, b=1.56) # Convert time coordinates of rainrates from start time # to end time rainrates_time_endtime = rainrates.copy() rainrates_time_endtime.coords['time'] = \ [ pd.Timestamp(t) + pd.Timedelta(minutes=6) for t in rainrates.coords['time'].values ] rainrates_5min = temporal_interp( rainrates_time_endtime, rg_object.start_time + pd.Timedelta(minutes=5), rg_object.end_time, intvl=pd.Timedelta(minutes=5), interp_type='quadratic' ) rainfalls = rr2rf(rainrates_5min, scan_duration=5) .. GENERATED FROM PYTHON SOURCE LINES 258-259 Step 3: Accumulate rainfall over an hour. .. GENERATED FROM PYTHON SOURCE LINES 259-266 .. code-block:: default acc_rf = acc( rainfalls, rg_object.end_time, acc_period=pd.Timedelta(minutes=60) ) .. GENERATED FROM PYTHON SOURCE LINES 267-276 Compositing rainfall ----------------------------------------------------------------- Perform compositing on radar and raingauge derived rainfall to obtain a composite QPE. Some parameter tuning may be required to make the observations fit better with each other. .. GENERATED FROM PYTHON SOURCE LINES 276-286 .. code-block:: default comprf = comp_qpe( area_def, rg_object=rg_object, rg_interp=interpolated_rg, rad_rf=acc_rf, rg_radius=5000, max_truth={'rg': 1., 'radar': 0.1} ) .. GENERATED FROM PYTHON SOURCE LINES 287-292 Plotting --------------------------------------------------------------- Plot composited radar and raingauge rainfall. .. GENERATED FROM PYTHON SOURCE LINES 292-387 .. code-block:: default # Plotting function for neatness. def plot_map( da, rg_object, acctime, area_def, based='raingauge and radar', savepath='', ): """ A custom function for plotting a map. Parameters -------------- da: xarray.DataArray Contains data to be plotted. rg_object: Rain Contains raingauge data. acctime: pd.Timestamp Contains the endtime of the accumulation period. area_def: pyresample.geometry.AreaDefinition AreaDefinition of the grid. based: str Type of data plotted in the map. savepath: str Path to save the image to. """ # Defining the colour scheme levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = matplotlib.colors.ListedColormap([ '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Plotting axes plt.figure(figsize=(28, 21)) crs = area_def.to_cartopy_crs() ax = plt.axes(projection=crs) # Plot data quadmesh = da.plot( cmap=cmap, norm=norm, extend='max', cbar_kwargs={'ticks': levels, 'format': '%.3g'} ) # Adjusting size of colorbar cb = quadmesh.colorbar cb.ax.set_ylabel( da.attrs['long_name']+'['+da.attrs['units']+']', fontsize=28 ) cb.ax.tick_params(labelsize=24) # Setting labels ax.xaxis.set_visible(True) ax.yaxis.set_visible(True) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(24) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(24) ax.xaxis.label.set_size(28) ax.yaxis.label.set_size(28) # Coastlines shpfile = THIS_DIR + \ '/../tests/samples/gadm36_HKG_shp/gadm36_HKG_0_hk1980.shp' shp = shapereader.Reader(shpfile) for record, geometry in zip(shp.records(), shp.geometries()): ax.add_geometries([geometry], crs, facecolor='None', edgecolor='black') # Show title plt.title( (f"Last Hour Rainfall at {acctime.strftime('%H:%MH %d-%b-%Y')}\n" f"(based on {based} data)"), fontsize=32 ) plt.savefig(savepath, dpi=300) .. GENERATED FROM PYTHON SOURCE LINES 388-413 .. code-block:: default # Plotting maps # Raingauge only plot_map( interpolated_rg, rg_object, acctime, area_def, based='raingauge', savepath=THIS_DIR+f'/../tests/outputs/raingauge_{acctime_str}.png' ) # Radar only plot_map( acc_rf, rg_object, acctime, area_def, based='radar', savepath=THIS_DIR+f'/../tests/outputs/radar_{acctime_str}.png' ) # Composite raingauge and radar plot_map( comprf, rg_object, acctime, area_def, savepath=THIS_DIR+f'/../tests/outputs/comp_{acctime_str}.png' ) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.075 seconds) .. _sphx_glr_download_auto_examples_qpe_hk.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: qpe_hk.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: qpe_hk.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_