""" Probabilistic Lightning Density Nowcast (Hong Kong) ======================================================== This example demonstrates how to perform probabilistic lightning nowcast by advecting lightning density, using data from Hong Kong. """ ############################################################# # Definitions # ----------------------------------------------------------- import os from copy import copy import textwrap import pyproj import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm, ListedColormap from matplotlib.gridspec import GridSpec import cartopy.crs as ccrs import cartopy.feature as cfeature from cartopy.io import shapereader from matplotlib.cm import ScalarMappable from pyresample import utils from swirlspy.qpf import rover from swirlspy.qpf import sla from swirlspy.qpe.utils import timestamps_ending, locate_file from swirlspy.rad.iris import read_iris_grid from swirlspy.core.resample import grid_resample from swirlspy.obs import Lightning from swirlspy.ltg.map import gen_ltg_density from swirlspy.utils import standardize_attr, FrameType plt.switch_backend('agg') THIS_DIR = os.getcwd() ########################################################################### # Initialising # ------------------------------------------------------------------------- # # Define the target grid: # # Defining target grid area_id = "hk1980_250km" description = ("A 1km resolution rectangular grid " "centred at HKO and extending to 250 km " "in each direction in HK1980 easting/northing coordinates") proj_id = 'hk1980' projection = ('+proj=tmerc +lat_0=22.31213333333334 ' '+lon_0=114.1785555555556 +k=1 +x_0=836694.05 ' '+y_0=819069.8 +ellps=intl +towgs84=-162.619,-276.959,' '-161.764,0.067753,-2.24365,-1.15883,-1.09425 +units=m ' '+no_defs') x_size = 500 y_size = 500 area_extent = (587000, 569000, 1087000, 1069000) area_def = utils.get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) ############################################################################ # Define basemap: # Load the shape of Hong Kong map_shape_file = os.path.abspath(os.path.join( THIS_DIR, '../tests/samples/shape/hk_hk1980' )) # coastline and province map_with_province = cfeature.ShapelyFeature( list(shapereader.Reader(map_shape_file).geometries()), area_def.to_cartopy_crs() ) # define the plot function def plot_base(ax: plt.Axes, extents: list, crs: ccrs.Projection): # fake the ocean color ax.imshow( np.tile(np.array([[[178, 208, 254]]], dtype=np.uint8), [2, 2, 1]), origin='upper', transform=crs, extent=extents, zorder=-1 ) # coastline, province and state, color ax.add_feature( map_with_province, facecolor=cfeature.COLORS['land'], edgecolor='none', zorder=0 ) # overlay coastline, province and state without color ax.add_feature( map_with_province, facecolor='none', edgecolor='gray', linewidth=0.5 ) ax.set_title('') ############################################################################ # Defining a basetime, nowcast interval and nowcast duration: # basetime = pd.Timestamp('201904201200').floor('min') basetime_str = basetime.strftime('%Y%m%d%H%M') nowcast_interval = pd.Timedelta(30, 'm') nowcast_duration = pd.Timedelta(2, 'h') ############################################################################ # Loading Lightning and Radar Data # -------------------------------------------------------------------------- # # Extract Lightning Location Information System (LLIS) files to read. # # The interval between LLIS files llis_file_interval = pd.Timedelta(1, 'm') # Finding the string representation # of timestamps marking the relevant LLIS files timestamps = timestamps_ending( basetime, duration=nowcast_interval, interval=llis_file_interval, format='%Y%m%d%H%M' ) # Locating files llis_dir = os.path.join(THIS_DIR, '../tests/samples/llis') located_files = [] for timestamp in timestamps: located_file = locate_file(llis_dir, timestamp) located_files.append(located_file) if located_file is not None: print(f"LLIS file for {timestamp} has been located") ################################################################### # Read data from files into Lightning objects. # # Initialising Lightning objects # Coordinates are geodetic ltg_object_geodetic = Lightning( located_files, 'geodetic', basetime - nowcast_interval, basetime ) ##################################################################### # Locating IRIS REF radar files needed to generate motion field. # The IRIS REF files are marked by start time. # # The interval between the radar files rad_interval = pd.Timedelta(6, 'm') # Finding the string representation # of the timestamps # marking the required files # In this case, the most recent radar files # separated by `nowcast_interval` is required rad_timestamps = timestamps_ending( basetime, duration=nowcast_interval + rad_interval, interval=rad_interval ) rad_timestamps = [rad_timestamps[0], rad_timestamps[-1]] rad_dir = os.path.join(THIS_DIR, '../tests/samples/iris/') located_rad_files = [] for timestamp in rad_timestamps: located_file = locate_file(rad_dir, timestamp) located_rad_files.append(located_file) if located_file is not None: print(f"IRIS REF file for {timestamp} has been located") ########################################################################## # Read from iris radar files using read_iris_grid(). # The data is in the Azimuthal Equidistant Projection. # reflec_unproj_list = [] for file in located_rad_files: reflec = read_iris_grid(file) reflec_unproj_list.append(reflec) ############################################################################# # Data Reprojection # --------------------------------------------------------------------------- # # Since the coordinates of the Lightning objects are geodetic, a conversion # from geodetic coordinates to that of the user-defined projection system is # required. # This can be achieved by `swirlspy.obs.Lightning.reproject()` # # pyproj representation of the map projection of the input data inProj = pyproj.Proj(init='epsg:4326') # pyproj representation of the intended map projection outProj = pyproj.Proj(area_def.proj_str) # reproject ltg_object = ltg_object_geodetic.reproject(inProj, outProj, 'HK1980') ######################################################################### # Radar data also needs to be reprojected from Azimuthal Equidistant # to HK1980. This is achieved by the `swirlspy.core.resample` function. # Following reprojection, the individual xarray.DataArrays can be concatenated # to a single xarray.DataArrays. # reflec_list = [] for z in reflec_unproj_list: reflec = grid_resample( z, z.attrs['area_def'], area_def, coord_label=['easting', 'northing'] ) reflec_list.append(reflec) reflectivity = xr.concat(reflec_list, dim='time') standardize_attr(reflectivity, frame_type=FrameType.dBZ) print(reflectivity) #################################################################### # Generating lightning density field # ------------------------------------------------------------------ # # Generate a lightning density field. # # #. Count the number of lightning strikes in # a circular search area of 8km surrounding a pixel over # the past 30 minutes. Do this for all the pixels. # #. This value is then spatially and temporally averaged to # give a lightning density, an indicator of lightning activity given as the # number of strikes/km\ :sup:`2`/hr. # # Obtaining lightning density from lightning objects ltg_density = gen_ltg_density( ltg_object, area_def, ltg_object.start_time, ltg_object.end_time, tolerance=8000, coord_label=['easting', 'northing'] ) print(ltg_density) # Duplicating ltg_density along the time dimension # so that it can be advected. ltg_density1 = ltg_density.copy() ltg_density1.coords['time'] = [basetime - nowcast_interval] ltg_density_concat = xr.concat( [ltg_density1, ltg_density], dim='time' ) # Identifying zero value ltg_density_concat.attrs['zero_value'] = np.nan ################################################################ # Generating motion fields and extrapolating # -------------------------------------------------------------- # # #. Generate motion field using ROVER. # #. Extrapolate lightning density using the motion field # by Semi-Lagrangian Advection. # #. Repeat using different parameters to form an ensemble. # Different ROVER parameters params = pd.DataFrame() params['smallest_scale'] = [1, 1, 1, 2] params['largest_scale'] = [7, 7, 7, 7] params['rho'] = [9, 9, 9, 9] params['alpha'] = [2000, 2000, 10000, 2000] params['sigma'] = [1.5, 2.5, 1.5, 2.5] params['tracking_interval'] = [30, 30, 30, 30] xtrp_frames = [] for i in range(len(params)): # Generating motion field using ROVER motion = rover( reflectivity, start_level=params['smallest_scale'][i], max_level=params['largest_scale'][i], rho=params['rho'][i], alpha=params['alpha'][i], sigma=params['sigma'][i] ) # SLA steps = int(nowcast_duration.total_seconds() // nowcast_interval.total_seconds()) ltg_density_xtrp = sla(ltg_density_concat, motion, nowcast_steps=steps) xtrp_frames.append(ltg_density_xtrp) # Create coordinates for `ensemble` dimension ens_coords = ["Member-{:02}".format(i) for i in range(len(xtrp_frames))] # Concat ltg_frames along the ensemble dimension ltg_frames = xr.concat(xtrp_frames, pd.Index(ens_coords, name='ensemble')) print(ltg_frames) ################################################################### # Now, let us visualise the extrapolated lightning density fields # for the next 30 minutes. levels = [ 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 999 ] cmap = ListedColormap([ '#FFFFFF', '#5050FF', '#00FFFF', '#00C030', '#A0FF80', '#FFFF40', '#FF9830', '#FF0000', '#FF80FF', '#800080' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) mappable = ScalarMappable(cmap=cmap, norm=norm) mappable.set_array([]) # Defining the crs crs = area_def.to_cartopy_crs() # Defining area x = ltg_frames.coords['easting'].values y = ltg_frames.coords['northing'].values extents = [ np.min(x), np.max(x), np.min(y), np.max(y) ] qx = motion.coords['easting'].values[::20] qy = motion.coords['northing'].values[::20] qu = motion.values[0, ::20, ::20] qv = motion.values[1, ::20, ::20] fig = plt.figure(figsize=(8, 8), frameon=False) gs = GridSpec( 2, 2, figure=fig, wspace=0.03, hspace=-0.25, top=0.95, bottom=0.05, left=0.17, right=0.845 ) # The time to visualise vis_time = basetime + nowcast_interval for i, mem in enumerate(ltg_frames.ensemble.values): row = i // 2 col = i % 2 ax = fig.add_subplot(gs[row, col], projection=crs) # plot base map plot_base(ax, extents, crs) # plot lightning frame = ltg_frames.sel(ensemble=mem, time=vis_time) frame.where(frame > levels[1]).plot( cmap=cmap, norm=norm, add_colorbar=False ) # plot motion vector ax.quiver( qx, qy, qu, qv, pivot='mid' ) ax.set_title(mem.split("-")[1], fontsize=10) ax.text( extents[0], extents[3], textwrap.dedent( """ Lightning Density Based @ {baseTime} """ ).format( baseTime=basetime.strftime('%H:%MH') ).strip(), fontsize=10, va='bottom', ha='left', linespacing=1 ) ax.text( extents[1], extents[3], textwrap.dedent( """ {validDate} Valid @ {validTime} """ ).format( validDate=basetime.strftime('%Y-%m-%d'), validTime=vis_time.strftime('%H:%MH') ).strip(), fontsize=10, va='bottom', ha='right', linespacing=1 ) cbar_ax = fig.add_axes([0.875, 0.125, 0.03, 0.75]) cbar = fig.colorbar( mappable, cax=cbar_ax, ticks=levels[:-1], extend='max', format='%.3g') cbar.ax.set_ylabel(ltg_frames.attrs['long_name'], rotation=90) fig.savefig( os.path.join( THIS_DIR, "../tests/outputs/ltg-hk.png" ), bbox_inches='tight' ) ############################################################################### # Deriving lightning probabilities # ------------------------------------------------------------------------------ # Finally, it is possible to derive # the probability of lightning exceeding threshold from our ensemble forecast. # # Compute exceedance probabililities for a 1 strikes/km^2/h threshold P = (ltg_frames > 1).sum(dim='ensemble') / len(ltg_frames.ensemble) * 100 # Define cmap, norm cmap = plt.get_cmap("OrRd", 10) levels = [ 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 ] norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Plotting the Exceedance Probability for the first 30 minutes nowcast fig = plt.figure(figsize=(15, 10)) ax = plt.axes(projection=area_def.to_cartopy_crs()) plot_base(ax, extents, area_def.to_cartopy_crs()) P.where(P > levels[0]).sel(time=vis_time).plot( cmap=cmap, norm=norm ) ax.text( extents[0], extents[3], textwrap.dedent( """ Probability exceeding 1 strikes/$km^2$/hr Based @ {baseTime} """ ).format( baseTime=basetime.strftime('%H:%MH') ).strip(), fontsize=20, va='bottom', ha='left', linespacing=1 ) ax.text( extents[1], extents[3], textwrap.dedent( """ {validDate} Valid @ {validTime} """ ).format( validDate=basetime.strftime('%Y-%m-%d'), validTime=vis_time.strftime('%H:%MH') ).strip(), fontsize=20, va='bottom', ha='right', linespacing=1 ) ax.set_title("") fig.savefig( os.path.join( THIS_DIR, "../tests/outputs/ltg-hk-p.png" ), bbox_inches='tight' )