""" QPE (Manila) ==================================================== This example demonstrates how to perform QPE, using raingauge data from Manila and radar data from Subic. """ ########################################################### # Definitions # -------------------------------------------------------- # import os import time import numpy as np import pandas as pd import copy import xarray import scipy import pyproj import matplotlib from matplotlib.colors import BoundaryNorm import matplotlib.pyplot as plt from PIL import Image from pyresample import utils from cartopy.io import shapereader import cartopy.feature as cfeature import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader from swirlspy.obs import Rain from swirlspy.rad.uf_ph import read_uf_ph from swirlspy.core.resample import grid_resample from swirlspy.qpe.rfmap import rg_interpolate, comp_qpe, show_raingauge from swirlspy.qpe.utils import timestamps_ending, locate_file, dbz2rr, rr2rf, \ temporal_interp, acc plt.switch_backend('agg') THIS_DIR = os.getcwd() os.chdir(THIS_DIR) ################################################################### # Initialising # ----------------------------------------------------------------- # # This section demonstrates extracting raingauge and radar data. # # Step 1: Defining an end-time for accumulating rainfall. # acctime = pd.Timestamp('20180811112000').floor('min') acctime_str = acctime.strftime('%Y%m%d%H%M') #################################################################### # Step 2: Setting up directories for raingauge and radar files. # rad_dir = THIS_DIR + '/../tests/samples/uf_ph/sub/' rg_dir = THIS_DIR + '/../tests/samples/rfmap/' ################################################################### # Step 3: Generating timestamps and pattern for both radar and # raingauge files. # Timestamps of raingauges rg_timestrings = timestamps_ending( acctime + pd.Timedelta(minutes=10), duration=pd.Timedelta(hours=1), interval=pd.Timedelta(minutes=10) ) # Raingauge pattern rg_pattern = ['rf60m_20'+ts for ts in rg_timestrings] # Finding time nearest radar file # to accumulation end time minute = acctime.minute nearest_6min = acctime.minute // 10 * 10 nearest_rad_timestamp = pd.Timestamp( acctime_str[:-2]+f'{nearest_6min:02}' ) rad_timestrings = timestamps_ending( nearest_rad_timestamp, duration=pd.Timedelta(hours=1), interval=pd.Timedelta(minutes=10) ) ##################################################################### # Step 4: Extracting raingauge and radar files from # their respective directories. located_rg_files = [] for pat in rg_pattern: located_rg_files.append(locate_file(rg_dir, pat)) located_radar_files = [] for ts in rad_timestrings: located_radar_files.append(locate_file(rad_dir, ts)) ##################################################################### # Step 5: Read data from raingauge files into a Rain object. # Coordinates are geodetic, following that in the files. rg_object_geodetic = Rain( located_rg_files, 'WGS84', duration=pd.Timedelta(minutes=5), NAN=[3276.7, 32767] ) ###################################################################### # Step 6: Define the target grid as a pyresample AreaDefinition. # Defining target grid area_id = "epsg3123_240km" description = ("A 240 m resolution rectangular grid " "centred at Subic RADAR and extending to 240 km " "in each direction") proj_id = 'epsg3123' projection = ('+proj=tmerc +lat_0=0 ' '+lon_0=121 +k=0.99995 +x_0=500000 ' '+y_0=0 +ellps=clrk66 +towgs84=-127.62,-67.24,' '-47.04,-3.068,4.903,1.578,-1.06 +units=m ' '+no_defs') x_size = 1000 y_size = 1000 area_extent = (191376.04113, 1399386.68659, 671376.04113, 1879386.68659) area_def = utils.get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) ######################################################################### # Step 7: Convert coordinates of raingauge object to desired projection. # In this example, the desired projection is PRS92. # This can be achieved by the .reproject() method of the Rain object. # inProj = pyproj.Proj(init="epsg:4326") outProj = pyproj.Proj(area_def.proj_str) rg_object = rg_object_geodetic.reproject(inProj, outProj, "PRS92") ###################################################################### # Step 8: Read radar files into xarray.DataArrays using read_uf_ph(). reflec_list = [] for file in located_radar_files: reflec = read_uf_ph( file, area_def=area_def, coord_label=['easting', 'northing'], indicator='deg_ppi', elevation=0.5 ) reflec_list.append(reflec) reflectivity = xarray.concat(reflec_list, dim='time') ################################################################### # Accumulating and interpolating rainfall # ----------------------------------------------------------------- # # Interpolate rainfall recorded by raingauges into the user-defined grid # and accumulate radar rainfall over an hour # after making the necessary # adjustments. # ################################################################## # Step 1: Interpolate Rain object to user-defined grid. # In this example, a multiquadric Radial Basis Function # is used. # interpolated_rg = rg_interpolate( rg_object, area_def, 'rbf', coord_label=['easting', 'northing'] ) ############################################################################## # Step 2: Convert to radar reflectivity to rainrates, # convert rainrates to times of raingauges, # and accumulate rainfalls every 10 minutes. rainrates = dbz2rr(reflectivity, a=300, b=1.4) # Convert time coordinates of rainrates from start time # to end time rainrates_time_endtime = rainrates.copy() rainrates_time_endtime.coords['time'] = \ [ pd.Timestamp(t) + pd.Timedelta(minutes=10) for t in rainrates.coords['time'].values ] rainfalls = rr2rf(rainrates_time_endtime, scan_duration=10) ############################################################################### # Step 3: Accumulate rainfall over an hour. acc_rf = acc( rainfalls, rg_object.end_time, acc_period=pd.Timedelta(minutes=60) ) ################################################################### # Compositing rainfall # ----------------------------------------------------------------- # # Perform compositing on radar and raingauge derived rainfall # to obtain a composite QPE. comprf = comp_qpe( area_def, rg_object=rg_object, rg_interp=interpolated_rg, rad_rf=acc_rf ) ################################################################### # Plotting # --------------------------------------------------------------- # # Plot composited radar and raingauge rainfall. # # Defining coastlines map_shape_file = os.path.join(THIS_DIR, "./../tests/samples/shape/rsmc") ocean_color = np.array([[[178, 208, 254]]], dtype=np.uint8) land_color = cfeature.COLORS['land'] coastline = cfeature.ShapelyFeature( list(shpreader.Reader(map_shape_file).geometries()), ccrs.PlateCarree() ) # Plotting function for neatness. def plot_map( da, rg_object, acctime, area_def, based='raingauge and radar', savepath='', area_extent=None ): """ A custom function for plotting a map. Parameters -------------- da: xarray.DataArray Contains data to be plotted. rg_object: Rain Contains raingauge data. acctime: pd.Timestamp Contains the endtime of the accumulation period. area_def: pyresample.geometry.AreaDefinition AreaDefinition of the grid. based: str Type of data plotted in the map. savepath: str Path to save the image to. area_extent: tuple Area extent (x0, x1, y0, y1) to be plotted. Defaults to None. """ # Defining the colour scheme levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = matplotlib.colors.ListedColormap([ '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Plotting axes plt.figure(figsize=(24, 21)) crs = area_def.to_cartopy_crs() ax = plt.axes(projection=crs) if area_extent is not None: ax.set_extent(area_extent, crs=crs) # Plot data quadmesh = da.plot( cmap=cmap, norm=norm, extend='max', cbar_kwargs={'ticks': levels, 'format': '%.3g'} ) # Adjusting size of colorbar cb = quadmesh.colorbar cb.ax.set_ylabel( da.attrs['long_name']+'['+da.attrs['units']+']', fontsize=28 ) cb.ax.tick_params(labelsize=24) # Setting labels ax.xaxis.set_visible(True) ax.yaxis.set_visible(True) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(24) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(24) ax.xaxis.label.set_size(28) ax.yaxis.label.set_size(28) # ocean ax.imshow(np.tile(ocean_color, [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1) # coastline, color ax.add_feature(coastline, facecolor=land_color, edgecolor='none', zorder=0) # overlay coastline without color ax.add_feature(coastline, facecolor='none', edgecolor='gray', linewidth=0.5, zorder=3) # Show raingauge show_raingauge( rg_object, ax, show_value=True, color='red', markersize=20, fontsize=20 ) # Show title plt.title( (f"Last Hour Rainfall at {acctime.strftime('%H:%MH %d-%b-%Y')}\n" f"(based on {based} data)"), fontsize=32 ) plt.savefig(savepath) ############################################################################ # Plotting maps r = 64000 proj_site = reflectivity.proj_site area_extent = ( proj_site[0]-r, proj_site[0]+r, proj_site[1]-r, proj_site[1]+r ) # Raingauge only plot_map( interpolated_rg, rg_object, acctime, area_def, based='raingauge', savepath=THIS_DIR+f'/../tests/outputs/raingauge_{acctime_str}.png', area_extent=area_extent ) # Radar only plot_map( acc_rf, rg_object, acctime, area_def, based='radar', savepath=THIS_DIR+f'/../tests/outputs/radar_{acctime_str}.png', area_extent=area_extent ) # Composite raingauge and radar plot_map( comprf, rg_object, acctime, area_def, savepath=THIS_DIR+f'/../tests/outputs/comp_{acctime_str}.png', area_extent=area_extent )