""" Hail Nowcast (Hong Kong) =========================== This example demonstrates a rule-based hail nowcast for the next 30 minutes, using data from Hong Kong. """ ######################################################################### # Setup # ----------------------------------------------------------------------- # # Import all required modules and methods: # import os import numpy as np import pandas as pd import xarray as xr from pyresample import utils import cartopy.feature as cf import cartopy.crs as ccrs from cartopy.io import shapereader import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import ListedColormap, BoundaryNorm from swirlspy.qpf import rover from swirlspy.rad import read_iris_grid, calc_vil from swirlspy.qpe.utils import timestamps_ending, locate_file from swirlspy.core.resample import grid_resample from swirlspy.object import get_labeled_frame, fit_ellipse from swirlspy.utils import standardize_attr, FrameType matplotlib.use('agg') ######################################################################### # Define the working directories: # # working_dir = os.path.join(os.getcwd(), 'swirlspy/examples') working_dir = os.getcwd() radar_dir = os.path.abspath( os.path.join(working_dir, '../tests/samples/iris/3d/') ) ######################################################################### # Define the basemap: # # define the plot function def plot_base(ax: plt.Axes, extents: list, crs: ccrs.Projection): # fake the ocean color ax.imshow( np.tile(np.array([[[178, 208, 254]]], dtype=np.uint8), [2, 2, 1]), origin='upper', transform=crs, extent=extents, zorder=-1 ) # coastline, province and state, color ax.add_feature( map_with_province, facecolor=cf.COLORS['land'], edgecolor='none', zorder=0 ) # overlay coastline, province and state without color ax.add_feature( map_with_province, facecolor='none', edgecolor='gray', linewidth=0.5 ) ax.set_title('') # Logging start_time = pd.Timestamp.now() ######################################################################### # Loading radar data # ----------------------------------------------------------------------- # # Specify the basetime basetime = pd.Timestamp('201403301930') # Generate timestamps for the current and past 6 minute # radar scan timestamps = timestamps_ending( basetime, duration=pd.Timedelta(6, 'm'), exclude_end=False ) # Locating the files located_files = [] for timestamp in timestamps: located_files.append(locate_file(radar_dir, timestamp)) # Reading the radar data reflectivity_list = [] for filename in located_files: reflectivity = read_iris_grid(filename) reflectivity_list.append(reflectivity) # Standardize reflectivity xarrays raw_frames = xr.concat(reflectivity_list, dim='time').sortby(['y'], ascending=False) standardize_attr(raw_frames, frame_type=FrameType.dBZ) initialising_time = pd.Timestamp.now() ######################################################################### # Identify regions of interest for hail # ----------------------------------------------------------------------- # # Hail has a chance of occurring when two phenomena co-happen: # # #. The 58 dBZ echo top exceeds 3 km. # #. The Vertically Integrated Liquid (VIL) up to 2 km is less than 5mm. # # getting radar scan for basetime reflectivity = raw_frames.sel(time=basetime) # maximum reflectivity at elevations > 3km ref_3km = reflectivity.sel( height=slice(3000, None) ).max(dim='height', keep_attrs=True) # 58 dBZ echo top exceeds 3km cond_1 = ref_3km > 58 # vil up to 2km vil_2km = calc_vil(reflectivity.sel(height=slice(1000, 2000))) # VIL up 2km is less than 5mm cond_2 = vil_2km < 5 # Region of interest for hail hail = xr.ufuncs.logical_and(cond_1, cond_2) ######################################################################### # The identified regions are then labeled and fitted with # minimum enclosing ellipses. # # label image # image is binary so any threshold between 0 and 1 works # define minimum size as 4e6 m^2 or 4 km^2 labeled_hail, uids = get_labeled_frame(hail, 0.5, min_size=4e6) # fit ellipses to regions of interest ellipse_list = [] for uid in uids: ellipse, _ = fit_ellipse(labeled_hail == uid) ellipse_list.append(ellipse) identify_time = pd.Timestamp.now() ######################################################################### # Extrapolation of hail region # ----------------------------------------------------------------------- # # First, we obtain the xarray.DataArray to generate # the motion field. # # In this example, we generate the motion field from # two consecutive 3km CAPPI radar scans closest to basetime. # # Select radar data at 3km frames = raw_frames.sel(height=3000).drop('height') ######################################################################### # Obtain the motion field by ROVER # # ROVER motion = rover(frames) motion_time = pd.Timestamp.now() ######################################################################### # Next, we extract the motion vector at the centroid of each ellipse, # and calculate the displacement of the ellipse after 30 minutes. # Since the distance is expressed in pixels, we need to convert # the distance of the motion vector to grid units (in this case, meters). # # getting meters per pixel area_def = reflectivity.attrs['area_def'] x_d = area_def.pixel_size_x y_d = area_def.pixel_size_y # time ratio # time ratio between nowcast interval and unit time time_ratio = pd.Timedelta(30, 'm') / pd.Timedelta(6, 'm') ellipse30_list = [] for ellipse in ellipse_list: # getting motion in pixels/6 minutes pu = motion[0].sel(x=ellipse['center'][0], y=ellipse['center'][1], method='nearest') pv = motion[1].sel(x=ellipse['center'][0], y=ellipse['center'][1], method='nearest') # converting to meters / 6 minutes u = x_d * pu v = y_d * pv # get displacement in 30 minutes dcenterx = u * time_ratio dcentery = v * time_ratio # get new position of ellipse after 30 minutes x30 = ellipse['center'][0] + dcenterx y30 = ellipse['center'][1] + dcentery # get new ellipse, only the center is changed ellipse30 = ellipse.copy() ellipse30['center'] = (x30, y30) ellipse30_list.append(ellipse30) extrapolate_time = pd.Timestamp.now() ######################################################################### # Visualisation # ----------------------------------------------------------------------- # # Defining figure fig = plt.figure(figsize=(12, 6.5)) # number of rows and columns in plot nrows = 2 ncols = 1 # Defining the crs crs = area_def.to_cartopy_crs() # Load the shape of Hong Kong map_shape_file = os.path.abspath(os.path.join( working_dir, '../tests/samples/shape/hk_tms_aeqd.shp' )) # coastline and province map_with_province = cf.ShapelyFeature( list(shapereader.Reader(map_shape_file).geometries()), area_def.to_cartopy_crs() ) # Defining extent x = labeled_hail.coords['x'].values y = labeled_hail.coords['y'].values x_d = x[1] - x[0] y_d = y[1] - y[0] extents = [x[0], y[0], x[-1], y[-1]] # Defining ellipse patches def gen_patches(lst, ls='-'): patch_list = [] for ellipse in lst: patch = matplotlib.patches.Arc( ellipse['center'], ellipse['b'] * 2, ellipse['a'] * 2, angle=ellipse['angle'], ls=ls ) patch_list.append(patch) return patch_list # 1. Plotting maximum reflectivity above 3km # Define color scheme # Defining colour scale and format. levels = [ -32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44, 47, 50, 53, 56, 58, 60, 62 ] cmap = ListedColormap([ '#FFFFFF00', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) ax = fig.add_subplot(ncols, nrows, 1, projection=crs) plot_base(ax, extents, crs) ref_3km.where(ref_3km > levels[1]).plot( ax=ax, cmap=cmap, norm=norm, extend='max', cbar_kwargs={ 'ticks': levels[1:], 'format': '%.3g', 'fraction': 0.046, 'pad': 0.04 } ) patches = gen_patches(ellipse_list) for patch in patches: ax.add_patch(patch) patches = gen_patches(ellipse30_list, ls='--') for patch in patches: ax.add_patch(patch) ax.set_title('MAX_REF >= 3KM') # 2. Plotting VIL up to 2km levels = [ 0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 15, 20, 25, 30, 32, 34 ] cmap = matplotlib.colors.ListedColormap([ '#FFFFFF', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) ax = fig.add_subplot(ncols, nrows, 2, projection=crs) plot_base(ax, extents, crs) vil_2km.where(vil_2km > levels[1]).plot( cmap=cmap, norm=norm, ax=ax, extend='max', cbar_kwargs={ 'ticks': levels[1:], 'format': '%.3g', 'fraction': 0.046, 'pad': 0.04 } ) ax.set_title('VIL <= 2km') patches = gen_patches(ellipse_list) for patch in patches: ax.add_patch(patch) patches = gen_patches(ellipse30_list, ls='--') for patch in patches: ax.add_patch(patch) suptitle1 = "Hail Nowcast Tracks" suptitle2 = basetime.strftime('%Y-%m-%d') suptitle3 = (f"Based @ {basetime.strftime('%H:%MH')}\n" f"Valid @ {(basetime + pd.Timedelta(30, 'm')).strftime('%H:%MH')}") fig.text(0., 0.93, suptitle1, va='top', ha='left', fontsize=16) fig.text(0.57, 0.93, suptitle2, va='top', ha='center', fontsize=16) fig.text(0.90, 0.93, suptitle3, va='top', ha='right', fontsize=16) plt.tight_layout() plt.savefig( working_dir + f"/../tests/outputs/hail.png", dpi=300 ) visualise_time = pd.Timestamp.now() ######################################################################### # Checking run time of each component # ----------------------------------------------------------------------- # print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"Identify time: {identify_time}") print(f"Motion field time: {motion_time}") print(f"Extrapolate time: {extrapolate_time}") print(f"Visualise time: {visualise_time}") print(f"Time to initialise: {initialising_time - start_time}") print(f"Time to identify hail regions: {identify_time - initialising_time}") print(f"Time to generate motion field: {motion_time - identify_time}") print(f"Time to extrapolate: {extrapolate_time - motion_time}") print(f"Time to visualise: {visualise_time - extrapolate_time}") print(f"Total: {visualise_time - start_time}")