""" Blending ======================================================== This example demonstrates how to blend different reflectivity sources into one. """ ########################################################### # Definitions # -------------------------------------------------------- # import os import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature import cartopy.io.shapereader as shpreader from matplotlib.gridspec import GridSpec from matplotlib.colors import BoundaryNorm from matplotlib.colors import ListedColormap from matplotlib.cm import ScalarMappable from pyresample import utils from swirlspy.core.resample import grid_resample from swirlspy.rad.iris import read_iris_grid from swirlspy.sat.h8 import read_h8_data from swirlspy.blending import comp_qpe, Raw plt.switch_backend('agg') root_dir = os.getcwd() start_time = pd.Timestamp.now() ############################################################# # Initialising # --------------------------------------------------- # # This section demonstrates parsing # Himawari-8 data. # # Step 1: Define necessary parameter. # # Define base time base_time = pd.Timestamp("2019-07-31T07:00") # Define data boundary in WGS84 (latitude) latitude_from = 30. latitude_to = 16. longitude_from = 105. longitude_to = 122. area = ( latitude_from, latitude_to, longitude_from, longitude_to ) # Define grid size, use negative value for descending range grid_size = (-.025, .025) # list of source data sources = [] initialising_time = pd.Timestamp.now() # Load map shape map_shape_file = os.path.abspath(os.path.join( root_dir, '../tests/samples/shape/se_asia' )) # coastline and province map_with_province = cfeature.ShapelyFeature( list(shpreader.Reader(map_shape_file).geometries()), ccrs.PlateCarree() ) # define the plot function def plot_base(ax: plt.Axes, extents: list, crs: ccrs.Projection): ax.set_extent(extents, crs=crs) # fake the ocean color ax.imshow( np.tile(np.array([[[178, 208, 254]]], dtype=np.uint8), [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1 ) # coastline, province and state, color ax.add_feature( map_with_province, facecolor=cfeature.COLORS['land'], edgecolor='none', zorder=0 ) # overlay coastline, province and state without color ax.add_feature( map_with_province, facecolor='none', edgecolor='gray', linewidth=0.5 ) ax.set_title('') ############################################################################## # Step 2: Read data from radar files into xarray.DataArray # using read_iris_grid(). radar = read_iris_grid( os.path.join(root_dir, "../tests/samples/iris/RAD190731150000.REF2256") ) radar_time = pd.Timestamp.now() ######################################################################## # Step 3: Define the target grid as a pyresample AreaDefinition. # Defining target grid area_id = "WGS84" description = 'World Geodetic System 1984' proj_id = 'WGS84' projection = '+proj=longlat +datum=WGS84 +no_defs' x_size = (longitude_to - longitude_from) / grid_size[1] + 1 y_size = (latitude_to - latitude_from) / grid_size[0] + 1 area_extent = (longitude_from, latitude_from, longitude_to, latitude_to) radar_area_def = utils.get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) ############################################################################## # Step 5: Reproject the radar data from read_iris_grid() from Centered # Azimuthal (source) projection to World Geodetic System 1984 projection. # # Extracting the AreaDefinition of the source projection area_def_src = radar.attrs['area_def'] # Reprojecting reproj_radar = grid_resample( radar, area_def_src, radar_area_def, coord_label=['x', 'y'] ).sortby( ['y'], ascending=False ) # fix floating point issue y_coords = np.linspace( latitude_from, latitude_to, reproj_radar.data.shape[1], dtype=np.float32 ) x_coords = np.linspace( longitude_from, longitude_to, reproj_radar.data.shape[2], dtype=np.float32 ) reproj_radar.coords['y'] = np.array(y_coords) reproj_radar.coords['x'] = np.array(x_coords) reproj_radar = reproj_radar.sel(time=reproj_radar.coords['time'].values[0]) radar_site = ( reproj_radar.attrs['proj_site'][1], reproj_radar.attrs['proj_site'][0], 1.8, # radius 0.76 # weight sigma ) sources.append(Raw( reproj_radar, [radar_site], # sites configuration, list of available sites useful for mosaic data 0.1 # data weight )) ############################################################################## # Step 6: Define data directory # Supply data directory. # Please make sure H8 data filename is follow the naming pattern - # HS_H08_{date}_{time}_B{channel:02}_FLDK_R{rsol:02}_S{seg:02}10.DAT # example: # base time = 2019-07-31 07:00 UTC # channel = 4 # resolution = 10 # segment = 2 # ======================================== # filename: HS_H08_20190731_0700_B04_FLDK_R10_S0410.DAT data_dir = os.path.join(root_dir, "../tests/samples/h8") sat_time = pd.Timestamp.now() ############################################################################## # Step 7: Parse data into reflectivity as xarray.DataArray # using read_h8_data(). # sat = read_h8_data( data_dir, base_time, area, grid_size ) # remove time axis sat = sat.sel(time=sat.coords['time'].values[0]) # no site data used, treat all points of data with same weight sources.append(Raw( sat, weight=0.01 # data weight )) blend_time = pd.Timestamp.now() ############################################################################## # Step 8: Blend all data together. reflec = comp_qpe( grid_size, area, sources ) post_time = pd.Timestamp.now() ############################################################################## # Step 9: Remove invalid data if needed. reflec.values[reflec.values < 13.] = reflec.attrs['zero_value'] # update sat data for plotting sat.values[sat.values < 13.] = sat.attrs['zero_value'] ############################################# # Generating radar reflectivity maps # ----------------------------------- # # Define the color scale and format of the plots # and plot using xarray.plot(). # # In this example, only hourly images will be plotted. # # Defining colour scale and format levels = [ -32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44, 47, 50, 53, 56, 58, 60, 62 ] cmap = ListedColormap([ '#FFFFFF00', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # colorbar map mappable = ScalarMappable(cmap=cmap, norm=norm) mappable.set_array([]) # Defining the crs crs = ccrs.PlateCarree() extents = (longitude_from, longitude_to, latitude_from, latitude_to) # Plotting fig: plt.Figure = plt.figure(figsize=(24, 8), frameon=False) gs = GridSpec( 1, 3, figure=fig, wspace=0.03, hspace=-0.25, top=0.95, bottom=0.05, left=0.17, right=0.845 ) # plot radar ax = fig.add_subplot(gs[0, 0], projection=crs) plot_base(ax, extents, crs) im = ax.imshow(reproj_radar.values, cmap=cmap, norm=norm, interpolation='nearest', extent=extents) ax.set_title( "RADAR\n" f"Based @ {base_time.strftime('%H:%MH')}", loc='left', fontsize=9 ) ax.set_title( '' ) ax.set_title( f"{base_time.strftime('%Y-%m-%d')} \n" f"Valid @ {(base_time + pd.Timedelta(minutes=10)).strftime('%H:%MH')} ", loc='right', fontsize=9 ) # plot H8 ax = fig.add_subplot(gs[0, 1], projection=crs) plot_base(ax, extents, crs) im = ax.imshow(sat.values, cmap=cmap, norm=norm, interpolation='nearest', extent=extents) ax.set_title( "H8\n" f"Based @ {base_time.strftime('%H:%MH')}", loc='left', fontsize=9 ) ax.set_title( '' ) ax.set_title( f"{base_time.strftime('%Y-%m-%d')} \n" f"Valid @ {(base_time + pd.Timedelta(minutes=10)).strftime('%H:%MH')} ", loc='right', fontsize=9 ) # plot blended ax = fig.add_subplot(gs[0, 2], projection=crs) plot_base(ax, extents, crs) im = ax.imshow(reflec.values, cmap=cmap, norm=norm, interpolation='nearest', extent=extents) ax.set_title( "Blended\n" f"Based @ {base_time.strftime('%H:%MH')}", loc='left', fontsize=9 ) ax.set_title( '' ) ax.set_title( f"{base_time.strftime('%Y-%m-%d')} \n" f"Valid @ {(base_time + pd.Timedelta(minutes=10)).strftime('%H:%MH')} ", loc='right', fontsize=9 ) cbar_ax = fig.add_axes([0.875, 0.125, 0.03, 0.75]) cbar = fig.colorbar( mappable, cax=cbar_ax, ticks=levels[1:], extend='max', format='%.3g') cbar.ax.set_ylabel('Reflectivity', rotation=90) fig.savefig( os.path.join( root_dir, "../tests/outputs/blending.png" ), bbox_inches='tight' ) image_time = pd.Timestamp.now() ###################################################################### # Checking run time of each component # -------------------------------------------------------------------- # print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"Read radar time: {radar_time}") print(f"Parse H8 data time: {sat_time}") print(f"Blending time: {blend_time}") print(f"Post blending time: {post_time}") print(f"Plotting blended image time: {image_time}") print(f"Time to initialise: {initialising_time - start_time}") print(f"Time to run read radar: {radar_time - initialising_time}") print(f"Time to run data parsing: {sat_time - radar_time}") print(f"Time to run blending: {blend_time - sat_time}") print(f"Time to perform post process: {post_time - blend_time}") print(f"Time to plot reflectivity image: {image_time - post_time}")