""" QPF (Manila) ======================================================== This example demonstrates how to perform operational deterministic QPF up to three hours using raingauge data from Manila and radar data from Subic. """ ########################################################### # Definitions # -------------------------------------------------------- # import os import numpy as np import pandas as pd import xarray as xr import cartopy.feature as cfeature import cartopy.crs as ccrs import cartopy.io.shapereader as shpreader import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm, ListedColormap from pyresample import utils from swirlspy.rad.uf_ph import read_uf_ph from swirlspy.qpe.utils import locate_file, timestamps_ending from swirlspy.qpf import rover from swirlspy.qpf import sla from swirlspy.utils import standardize_attr, FrameType from swirlspy.utils.conversion import to_rainfall_depth, acc_rainfall_depth from swirlspy.core.resample import grid_resample plt.switch_backend('agg') THIS_DIR = os.getcwd() os.chdir(THIS_DIR) start_time = pd.Timestamp.now() ############################################################# # Initialising # --------------------------------------------------- # # This section demonstrates extracting # radar reflectivity data. # # Step 1: Define a basetime. # # Supply basetime basetime = pd.Timestamp('20180811112000').floor('min') ############################################################################## # Step 2: Using basetime, generate timestamps of desired radar files # timestamps_ending() and locate files using locate_file(). # Obtain radar files dir = THIS_DIR + '/../tests/samples/uf_ph/sub/' located_files = [] radar_ts = timestamps_ending( basetime, duration=pd.Timedelta(60, 'm'), interval=pd.Timedelta(10, 'm') ) for timestamp in radar_ts: located_files.append(locate_file(dir, timestamp)) ############################################################################# # Step 3: Define the target grid as a pyresample AreaDefinition. area_id = "epsg3123_240km" description = ("A 240 m resolution rectangular grid " "centred at Subic RADAR and extending to 240 km " "in each direction") proj_id = 'epsg3123' projection = ('+proj=tmerc +lat_0=0 ' '+lon_0=121 +k=0.99995 +x_0=500000 ' '+y_0=0 +ellps=clrk66 +towgs84=-127.62,-67.24,' '-47.04,-3.068,4.903,1.578,-1.06 +units=m ' '+no_defs') x_size = 500 y_size = 500 area_extent = (191376.04113, 1399386.68659, 671376.04113, 1879386.68659) area_def = utils.get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) ############################################################################## # Step 4: Read data from radar files into xarray.DataArray # using read_uf_ph(). # reflectivity_list = [] # stores reflec from read_iris() for filename in located_files: reflec = read_uf_ph( filename, area_def=area_def, coord_label=['easting', 'northing'], indicator='cappi', elevation=2 ) reflectivity_list.append(reflec) ############################################################################ # Step 5: Assigning reflectivity xarrays at the last two timestamps to # variables for use during ROVER QPF. initialising_time = pd.Timestamp.now() ########################################################### # Running ROVER and Semi-Lagrangian Advection # ------------------------------------------- # # 1. Concatenate two reflectivity xarrays along time dimension. # 2. Run ROVER, with the concatenated xarray as the input. # 3. Perform Semi-Lagrangian Advection using the motion fields from rover. # Combining the two reflectivity DataArrays # the order of the coordinate keys is now ['y', 'x', 'time'] # as opposed to ['time', 'x', 'y'] reflec_concat = xr.concat(reflectivity_list, dim='time') standardize_attr(reflec_concat, frame_type=FrameType.dBZ, zero_value=9999.) # Rover motion = rover(reflec_concat) rover_time = pd.Timestamp.now() # Semi Lagrangian Advection reflectivity = sla(reflec_concat, motion, nowcast_steps=30) sla_time = pd.Timestamp.now() ############################################################## # Concatenating observed and forecasted reflectivities # ------------------------------------------------------- # # 1. Add forecasted reflectivity to reproj_reflectivity_list. # 2. Concatenate observed and forecasted reflectivity # xarray.DataArrays along the time dimension. reflectivity = xr.concat([reflec_concat[:-1, ...], reflectivity], dim='time') reflectivity.attrs['long_name'] = 'Reflectivity 2km CAPPI' standardize_attr(reflectivity) concat_time = pd.Timestamp.now() ############################################# # Generating radar reflectivity maps # ----------------------------------- # # Define the color scale and format of the plots # and plot using xarray.plot(). # # In this example, only hourly images will be plotted. # # Defining colour scale and format levels = [ -32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44, 47, 50, 53, 56, 58, 60, 62 ] cmap = ListedColormap([ '#FFFFFF', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Defining the crs crs = area_def.to_cartopy_crs() # Generating a timelist for every hour timelist = [ (basetime + pd.Timedelta(minutes=60*i-10)) for i in range(4) ] # Obtaining the slice of the xarray to be plotted da_plot = reflectivity.sel(time=timelist) # Defining motion quivers qx = motion.coords['easting'].values[::5] qy = motion.coords['northing'].values[::5] qu = motion.values[0, ::5, ::5] qv = motion.values[1, ::5, ::5] # Defining coastlines map_shape_file = os.path.join(THIS_DIR, "./../tests/samples/shape/rsmc") ocean_color = np.array([[[178, 208, 254]]], dtype=np.uint8) land_color = cfeature.COLORS['land'] coastline = cfeature.ShapelyFeature( list(shpreader.Reader(map_shape_file).geometries()), ccrs.PlateCarree() ) # Plotting p = da_plot.plot( col='time', col_wrap=2, subplot_kws={'projection': crs}, cbar_kwargs={ 'extend': 'max', 'ticks': levels[1:], 'format': '%.3g' }, cmap=cmap, norm=norm ) for idx, ax in enumerate(p.axes.flat): # ocean ax.imshow(np.tile(ocean_color, [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1) # coastline, color ax.add_feature(coastline, facecolor=land_color, edgecolor='none', zorder=0) # overlay coastline without color ax.add_feature(coastline, facecolor='none', edgecolor='gray', linewidth=0.5, zorder=3) ax.quiver(qx, qy, qu, qv, pivot='mid', regrid_shape=20) ax.gridlines() ax.set_title( "Reflectivity\n" f"Based @ {basetime.strftime('%H:%MH')}", loc='left', fontsize=9 ) ax.set_title( '' ) ax.set_title( f"{basetime.strftime('%Y-%m-%d')} \n" f"Valid @ {timelist[idx].strftime('%H:%MH')} ", loc='right', fontsize=9 ) plt.savefig( THIS_DIR + f"/../tests/outputs/rover-output-map-mn.png", dpi=300 ) radar_image_time = pd.Timestamp.now() ########################################################################## # Accumulating hourly rainfall for 3-hour forecast # ------------------------------------------------ # # Hourly accumulated rainfall is calculated every 30 minutes, the first # endtime is the basetime i.e. T+0min. # # #. Convert rainrates to rainfalls in 10 mins with to_rainfall_depth(). # #. Accumulate hourly rainfall every 30 minutes using acc_rainfall_depth(). # Convert reflectivity to rainrates rainfalls = to_rainfall_depth(reflectivity, a=300, b=1.4) # Converting the coordinates of xarray from start to endtime rainfalls.coords['time'] = [ pd.Timestamp(t) + pd.Timedelta(10, 'm') for t in rainfalls.coords['time'].values ] rainfalls.attrs['step_size'] = pd.Timedelta(10, 'm') # Accumulate hourly rainfall every 30 minutes acc_rf = acc_rainfall_depth( rainfalls, basetime, basetime+pd.Timedelta(hours=3) ) acc_rf.attrs['long_name'] = 'Rainfall accumulated over the past 60 minutes' acc_time = pd.Timestamp.now() ####################################################################### # Plotting rainfall maps # --------------------------------------- # # Define the colour scheme and format and plot using xarray.plot(). # # In this example, only hourly images will be plotted. # # Defining the colour scheme levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = ListedColormap([ '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Defining projection crs = area_def.to_cartopy_crs() # Defining zoom extent r = 64000 proj_site = acc_rf.proj_site zoom = ( proj_site[0]-r, proj_site[0]+r, proj_site[1]-r, proj_site[1]+r ) # (x0, x1, y0, y1) # Defining times for plotting timelist = [basetime + pd.Timedelta(i, 'h') for i in range(4)] # Obtaining xarray slice to be plotted da_plot = acc_rf.sel( easting=slice(zoom[0], zoom[1]), northing=slice(zoom[3], zoom[2]), time=timelist ) # Plotting p = da_plot.plot( col='time', col_wrap=2, subplot_kws={'projection': crs}, cbar_kwargs={ 'extend': 'max', 'ticks': levels, 'format': '%.3g' }, cmap=cmap, norm=norm ) for idx, ax in enumerate(p.axes.flat): # ocean ax.imshow(np.tile(ocean_color, [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1) # coastline, color ax.add_feature(coastline, facecolor=land_color, edgecolor='none', zorder=0) # overlay coastline without color ax.add_feature(coastline, facecolor='none', edgecolor='gray', linewidth=0.5, zorder=3) ax.gridlines() ax.set_xlim(zoom[0], zoom[1]) ax.set_ylim(zoom[2], zoom[3]) ax.set_title( "Past Hour Rainfall\n" f"Based @ {basetime.strftime('%H:%MH')}", loc='left', fontsize=8 ) ax.set_title( '' ) ax.set_title( f"{basetime.strftime('%Y-%m-%d')} \n" f"Valid @ {timelist[idx].strftime('%H:%MH')} ", loc='right', fontsize=8 ) plt.savefig( THIS_DIR + f"/../tests/outputs/rainfall_mn.png", dpi=300 ) rf_image_time = pd.Timestamp.now() ############################################################################## # Extract the rainfall values at a specified location # ------------------------------------------------------------------ # # In this example, the rainfall values at the location is assumed # to be the same as the nearest gridpoint. # # 1. Read information regarding the rain gauge # stations into a pandas.DataFrame. # 2. Extract the rainfall values at the nearest gridpoint to location # for given timesteps (in this example, 30 minute intervals). # 3. Store rainfall values over time in a pandas.DataFrame. # 4. Plot the time series of rainfall at different stations. # Getting rain gauge station coordinates df = pd.read_csv( os.path.join(THIS_DIR, "../tests/samples/manila_rg_list.csv"), delim_whitespace=True, usecols=[0, 3, 4] ) # Extract rainfall values at gridpoint closest to the # location specified for given timesteps and storing it # in pandas.DataFrame. rf_time = [] for time in acc_rf.coords['time'].values: rf = [] for index, row in df.iterrows(): rf.append(acc_rf.sel( time=time, northing=row[2], easting=row[1], method='nearest' ).values) rf_time.append(rf) rf_time = np.array(rf_time) station_rf = pd.DataFrame( data=rf_time, columns=df.iloc[:, 0], index=pd.Index( acc_rf.coords['time'].values, name='time' ) ) print(station_rf) loc_stn = \ ['BAA', 'BUM', 'PAF', 'QUL', 'ZAP', 'ZAA'] loc_stn_drop = [ stn for stn in station_rf.columns.to_list() if stn not in loc_stn ] df_loc = station_rf.drop(loc_stn_drop, axis=1) print(df_loc) # Plotting time series graph for selected stations ax = df_loc.plot(title="Time Series of Hourly Accumulated Rainfall", grid=True) ax.set_ylabel("Hourly Accumulated Rainfall (mm)") plt.savefig(THIS_DIR+"/../tests/outputs/qpf_time_series.png") extract_time = pd.Timestamp.now() ###################################################################### # Checking run time of each component # -------------------------------------------------------------------- # print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"Rover time: {rover_time}") print(f"SLA time: {sla_time}") print(f"Plotting radar image time: {radar_image_time}") print(f"Accumulating rainfall time: {acc_time}") print(f"Concatenating time: {concat_time}") print(f"Plotting rainfall map time: {rf_image_time}") print(f"Extracting and plotting time series time: {extract_time}") print(f"Time to initialise: {initialising_time-start_time}") print(f"Time to run rover: {rover_time-initialising_time}") print(f"Time to perform SLA: {sla_time-rover_time}") print(f"Time to concatenate xarrays: {concat_time - sla_time}") print(f"Time to plot radar image: {radar_image_time - concat_time}") print(f"Time to accumulate rainfall: {acc_time - radar_image_time}") print(f"Time to plot rainfall maps: {rf_image_time-acc_time}") print(f"Time to extract and plot time series: {extract_time-rf_image_time}")