""" QPF (Hong Kong) ======================================================== This example demonstrates how to perform operational deterministic QPF up to three hours from raingauge and radar data, using data from Hong Kong. """ ########################################################### # Definitions # -------------------------------------------------------- # ######################################################################## # Import all required modules and methods: # Python package to allow system command line functions import os # Python package to manage warning message import warnings # Python package for time calculations import pandas as pd # Python package for numerical calculations import numpy as np # Python package for xarrays to read and handle netcdf data import xarray as xr # Python package for projection description from pyresample import get_area_def # Python package for projection import cartopy.crs as ccrs # Python package for land/sea features import cartopy.feature as cfeature # Python package for reading map shape file import cartopy.io.shapereader as shpreader # Python package for creating plots from matplotlib import pyplot as plt # Python package for colorbars from matplotlib.colors import BoundaryNorm, ListedColormap # Python com-swirls package to calculate motion field (rover) and semi-lagrangian advection from swirlspy.qpf import rover, sla # swirlspy data parser function from swirlspy.rad.iris import read_iris_grid # swirlspy test data source locat utils function from swirlspy.qpe.utils import timestamps_ending, locate_file # swirlspy regrid function from swirlspy.core.resample import grid_resample # swirlspy standardize data function from swirlspy.utils import standardize_attr, FrameType # swirlspy data convertion function from swirlspy.utils.conversion import to_rainfall_depth, acc_rainfall_depth # directory constants from swirlspy.tests.samples import DATA_DIR from swirlspy.tests.outputs import OUTPUT_DIR warnings.filterwarnings("ignore") plt.switch_backend('agg') start_time = pd.Timestamp.now() ############################################################# # Initialising # --------------------------------------------------- # # This section demonstrates extracting # radar reflectivity data. # # Step 1: Define a basetime. # # Supply basetime basetime = pd.Timestamp('201902190800') ############################################################################## # Step 2: Using basetime, generate timestamps of desired radar files # timestamps_ending() and locate files using locate_file(). # Obtain radar files dir = os.path.join(DATA_DIR, 'iris/ppi') located_files = [] radar_ts = timestamps_ending( basetime, duration=pd.Timedelta(60, 'm') ) for timestamp in radar_ts: located_files.append(locate_file(dir, timestamp)) ############################################################################## # Step 3: Read data from radar files into xarray.DataArray # using read_iris_grid(). # reflectivity_list = [] # stores reflec from read_iris_grid() for filename in located_files: reflec = read_iris_grid(filename) reflectivity_list.append(reflec) ######################################################################## # Step 4: Define the target grid as a pyresample AreaDefinition. # Defining target grid area_id = "hk1980_250km" description = ("A 1km resolution rectangular grid " "centred at HKO and extending to 250 km " "in each direction in HK1980 easting/northing coordinates") proj_id = 'hk1980' projection = ('+proj=tmerc +lat_0=22.31213333333334 ' '+lon_0=114.1785555555556 +k=1 +x_0=836694.05 ' '+y_0=819069.8 +ellps=intl +towgs84=-162.619,-276.959,' '-161.764,0.067753,-2.24365,-1.15883,-1.09425 +units=m ' '+no_defs') x_size = 500 y_size = 500 area_extent = (587000, 569000, 1087000, 1069000) area_def_tgt = get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) ############################################################################## # Step 5: Reproject the radar data from read_iris_grid() from Centered # Azimuthal # (source) projection to HK 1980 (target) projection. # Extracting the AreaDefinition of the source projection area_def_src = reflectivity_list[0].attrs['area_def'] # Reprojecting reproj_reflectivity_list = [] for reflec in reflectivity_list: reproj_reflec = grid_resample( reflec, area_def_src, area_def_tgt, coord_label=['easting', 'northing'] ) reproj_reflectivity_list.append(reproj_reflec) ############################################################################ # Step 6: Assigning reflectivity xarrays at the last two timestamps to # variables for use during ROVER QPF. initialising_time = pd.Timestamp.now() ########################################################### # Running ROVER and Semi-Lagrangian Advection # ------------------------------------------- # # 1. Concatenate two reflectivity xarrays along time dimension. # 2. Run ROVER, with the concatenated xarray as the input. # 3. Perform Semi-Lagrangian Advection using the motion fields from rover. # Combining the two reflectivity DataArrays # the order of the coordinate keys is now ['y', 'x', 'time'] # as opposed to ['time', 'x', 'y'] reflec_concat = xr.concat(reproj_reflectivity_list, dim='time') standardize_attr(reflec_concat, frame_type=FrameType.dBZ, zero_value=9999.) # Rover motion = rover(reflec_concat) rover_time = pd.Timestamp.now() # Semi Lagrangian Advection reflectivity = sla( reflec_concat, motion, 30 ) sla_time = pd.Timestamp.now() ############################################################## # Concatenating observed and forecasted reflectivities # ------------------------------------------------------- # # 1. Add forecasted reflectivity to reproj_reflectivity_list. # 2. Concatenate observed and forecasted reflectivity # xarray.DataArrays along the time dimension. reflectivity = xr.concat([reflec_concat[:-1, ...], reflectivity], dim='time') reflectivity.attrs['long_name'] = 'Reflectivity' standardize_attr(reflectivity) concat_time = pd.Timestamp.now() ############################################# # Generating radar reflectivity maps # ----------------------------------- # # Define the color scale and format of the plots # and plot using xarray.plot(). # # In this example, only hourly images will be plotted. # # Defining colour scale and format levels = [ -32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44, 47, 50, 53, 56, 58, 60, 62 ] cmap = ListedColormap([ '#FFFFFF', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Defining the crs crs = area_def_tgt.to_cartopy_crs() # Generating a timelist for every hour timelist = [ (basetime + pd.Timedelta(60*i-6, 'm')) for i in range(4) ] # Obtaining the slice of the xarray to be plotted da_plot = reflectivity.sel(time=timelist) # Defining motion quivers qx = motion.coords['easting'].values[::5] qy = motion.coords['northing'].values[::5] qu = motion.values[0, ::5, ::5] qv = motion.values[1, ::5, ::5] # Defining coastlines map_shape_file = os.path.join(DATA_DIR, "shape/rsmc") ocean_color = np.array([[[178, 208, 254]]], dtype=np.uint8) land_color = cfeature.COLORS['land'] coastline = cfeature.ShapelyFeature( list(shpreader.Reader(map_shape_file).geometries()), ccrs.PlateCarree() ) # Plotting p = da_plot.plot( col='time', col_wrap=2, subplot_kws={'projection': crs}, cbar_kwargs={ 'extend': 'max', 'ticks': levels[1:], 'format': '%.3g' }, cmap=cmap, norm=norm ) for idx, ax in enumerate(p.axes.flat): # ocean ax.imshow(np.tile(ocean_color, [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1) # coastline, color ax.add_feature(coastline, facecolor=land_color, edgecolor='none', zorder=0) # overlay coastline without color ax.add_feature(coastline, facecolor='none', edgecolor='gray', linewidth=0.5, zorder=3) ax.quiver(qx, qy, qu, qv, pivot='mid', regrid_shape=20) ax.gridlines() ax.set_title( "Reflectivity\n" f"Based @ {basetime.strftime('%H:%MH')}", loc='left', fontsize=9 ) ax.set_title( '' ) ax.set_title( f"{basetime.strftime('%Y-%m-%d')} \n" f"Valid @ {timelist[idx].strftime('%H:%MH')} ", loc='right', fontsize=9 ) plt.savefig( os.path.join(OUTPUT_DIR, "rover-output-map-hk.png"), dpi=300 ) radar_image_time = pd.Timestamp.now() ########################################################################## # Accumulating hourly rainfall for 3-hour forecast # ------------------------------------------------ # # Hourly accumulated rainfall is calculated every 30 minutes, the first # endtime is the basetime i.e. T+0min. # # #. Convert reflectivity in dBZ to rainfalls in 6 mins with to_rainfall_depth(). # #. Changing time coordinates of xarray from start time to endtime. # #. Accumulate hourly rainfall every 30 minutes using multiple_acc(). # Convert reflectivity to rainrates rainfalls = to_rainfall_depth(reflectivity, a=58.53, b=1.56) # Converting the coordinates of xarray from start to endtime rainfalls.coords['time'] = [ pd.Timestamp(t) + pd.Timedelta(6, 'm') for t in rainfalls.coords['time'].values ] # Accumulate hourly rainfall every 30 minutes acc_rf = acc_rainfall_depth( rainfalls, basetime, basetime + pd.Timedelta(hours=3) ) acc_rf.attrs['long_name'] = 'Rainfall accumulated over the past 60 minutes' acc_time = pd.Timestamp.now() ####################################################################### # Plotting rainfall maps # --------------------------------------- # # Define the colour scheme and format and plot using xarray.plot(). # # In this example, only hourly images will be plotted. # # Defining the colour scheme levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = ListedColormap([ '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Defining projection crs = area_def_tgt.to_cartopy_crs() # Defining zoom extent r = 64000 proj_site = acc_rf.proj_site zoom = ( proj_site[0]-r, proj_site[0]+r, proj_site[1]-r, proj_site[1]+r ) # (x0, x1, y0, y1) # Defining times for plotting timelist = [basetime + pd.Timedelta(i, 'h') for i in range(4)] # Obtaining xarray slice to be plotted da_plot = acc_rf.sel( easting=slice(zoom[0], zoom[1]), northing=slice(zoom[3], zoom[2]), time=timelist ) # Plotting p = da_plot.plot( col='time', col_wrap=2, subplot_kws={'projection': crs}, cbar_kwargs={ 'extend': 'max', 'ticks': levels, 'format': '%.3g' }, cmap=cmap, norm=norm ) for idx, ax in enumerate(p.axes.flat): # ocean ax.imshow(np.tile(ocean_color, [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1) # coastline, color ax.add_feature(coastline, facecolor=land_color, edgecolor='none', zorder=0) # overlay coastline without color ax.add_feature(coastline, facecolor='none', edgecolor='gray', linewidth=0.5, zorder=3) ax.gridlines() ax.set_xlim(zoom[0], zoom[1]) ax.set_ylim(zoom[2], zoom[3]) ax.set_title( "Past Hour Rainfall\n" f"Based @ {basetime.strftime('%H:%MH')}", loc='left', fontsize=8 ) ax.set_title( '' ) ax.set_title( f"{basetime.strftime('%Y-%m-%d')} \n" f"Valid @ {timelist[idx].strftime('%H:%MH')} ", loc='right', fontsize=8 ) plt.savefig( os.path.join(OUTPUT_DIR, "rainfall_hk.png"), dpi=300 ) rf_image_time = pd.Timestamp.now() ############################################################################## # Extract the rainfall values at a specified location # ------------------------------------------------------------------ # # In this example, the rainfall values at the location is assumed # to be the same as the nearest gridpoint. # # 1. Read information regarding the rain gauge stations # into a pandas.DataFrame. # 2. Extract the rainfall values at the nearest gridpoint to location # for given times (in this example, 30 minute intervals). # 3. Store rainfall values over time in a pandas.DataFrame. # 4. Plot the time series of rainfall at different stations. # Getting rain gauge station coordinates df = pd.read_csv( os.path.join(DATA_DIR, "hk_raingauge.csv"), usecols=[0, 1, 2, 3, 4] ) # Extract rainfall values at gridpoint closest to the # location specified for given timesteps and storing it # in pandas.DataFrame. rf_time = [] for time in acc_rf.coords['time'].values: rf = [] for index, row in df.iterrows(): rf.append(acc_rf.sel( time=time, northing=row[1], easting=row[2], method='nearest' ).values) rf_time.append(rf) rf_time = np.array(rf_time) station_rf = pd.DataFrame( data=rf_time, columns=df.iloc[:, 0], index=pd.Index( acc_rf.coords['time'].values, name='time' ) ) print(station_rf) # Plotting time series graph ax = station_rf.plot(title="Time Series of Hourly Accumulated Rainfall", grid=True) ax.set_ylabel("Hourly Accumulated Rainfall (mm)") plt.savefig(os.path.join(OUTPUT_DIR, "qpf_time_series.png")) extract_time = pd.Timestamp.now() ###################################################################### # Checking run time of each component # -------------------------------------------------------------------- # print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"Rover time: {rover_time}") print(f"SLA time: {sla_time}") print(f"Concatenating time: {concat_time}") print(f"Plotting radar image time: {radar_image_time}") print(f"Accumulating rainfall time: {acc_time}") print(f"Plotting rainfall map time: {rf_image_time}") print(f"Extracting and plotting time series time: {extract_time}") print(f"Time to initialise: {initialising_time-start_time}") print(f"Time to run rover: {rover_time-initialising_time}") print(f"Time to perform SLA: {sla_time-rover_time}") print(f"Time to concatenate xarrays: {concat_time - sla_time}") print(f"Time to plot radar image: {radar_image_time - concat_time}") print(f"Time to accumulate rainfall: {acc_time - radar_image_time}") print(f"Time to plot rainfall maps: {rf_image_time-acc_time}") print(f"Time to extract and plot time series: {extract_time-rf_image_time}")