""" QPF (Malaysia) ======================================================== This example demonstrates how to perform operational deterministic QPF up to three hours using national radar data. """ ########################################################### # Definitions # -------------------------------------------------------- # ######################################################################## # Import all required modules and methods: # Python package to allow system command line functions import os # Python package to manage warning message import warnings # Python package for timestamp import pandas as pd # Python package for xarrays to read and handle netcdf data import xarray as xr # Python package for numerical calculations import numpy as np # Python package for reading map shape file import cartopy.io.shapereader as shpreader # Python package for land/sea features import cartopy.feature as cfeature # Python package for projection import cartopy.crs as ccrs # Python package for creating plots from matplotlib import pyplot as plt # Python package for output import grid from matplotlib.gridspec import GridSpec # Python package for colorbars from matplotlib.colors import BoundaryNorm, ListedColormap # Python package for scalar data to RGBA mapping from matplotlib.cm import ScalarMappable # Python com-swirls package to standardize attributes from swirlspy.utils import standardize_attr, FrameType # Python com-swirls package to calculate motion field (rover) and semi-lagrangian advection from swirlspy.qpf import rover, sla # directory constants from swirlspy.tests.samples import DATA_DIR from swirlspy.tests.outputs import OUTPUT_DIR warnings.filterwarnings("ignore") start_time = pd.Timestamp.now() ############################################################# # Initialising # --------------------------------------------------- # # This section demonstrates extracting # radar reflectivity data. # # Step 1: Define your input data directory and output directory # # Supply the directory of radar and nwp data data_dir = os.path.abspath( os.path.join(DATA_DIR, 'netcdf_ms') ) ############################################################################## # Step 2: Define a basetime # # Supply basetime basetime = pd.Timestamp('201908090900') ############################################################################## # Step 3: Read data files from the radar data using xarray() # # Radar data listed from the basetime[0] --> 3 hours before the basetime[17] (descending time) interval = 10 # Interval of radar data radar_datas = [] for i in range(0, 2): t = basetime - pd.Timedelta(minutes=i * interval) # Radar data nomenclature filename = os.path.join( data_dir, t.strftime("radar_d03_%Y-%m-%d_%H_%M_00.rapids.nc") ) reflec = xr.open_dataset(filename) radar_datas.append(reflec) # Concatenate list by time reflec_concat = xr.concat(radar_datas, dim='time') # Extracting the radar data: The radar dBZ variable is named 'Zradar', therefore, we extract 'Zradar' radar = reflec_concat['Zradar'] # Reversing such that time goes from earliest to latest; 3 hours before basetime[0] --> basetime[17] radar = radar.sortby('time', ascending=True) # Filtering radar = radar.where(radar > 15, np.nan) initialising_time = pd.Timestamp.now() ############################################################################## # Nowcast (SWIRLS-Radar-Advection) # --------------------------------------------------- # The swirls radar advection was performed using the observed radar data # Firstly, some attributes necessary for com-swirls input variable is added # Secondly, rover function is invoked to compute the motion field # Thirdly, semi-lagrangian advection is performed to advect the radar data using the rover motion field # Adding in some attributes that is step_size <10 mins in pandas.Timedelta>, zero_value <9999.> frame_type standardize_attr(radar, frame_type=FrameType.dBZ, zero_value=np.nan) # Rover motion field computation motion = rover(radar) rover_time = pd.Timestamp.now() # Semi-Lagrangian Advection swirls = sla(radar, motion, 18) # Radar time goes from earliest to latest sla_time = pd.Timestamp.now() ############################################################################## # Plotting result # --------------------------------------------------- # Step 1: Defining the dBZ levels, colorbar parameters and projection # levels of colorbar (dBZ) levels = [-32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44, 47, 50, 53, 56, 58, 60, 62] # hko colormap for dBZ at each levels cmap = ListedColormap([ '#FFFFFF', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) # boundary norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # scalar data to RGBA mapping scalar_map = ScalarMappable(cmap=cmap, norm=norm) scalar_map.set_array([]) # Defining plot parameters map_shape_file = os.path.abspath(os.path.join( DATA_DIR, 'shape/se_asia' )) # coastline and province se_asia = cfeature.ShapelyFeature( list(shpreader.Reader(map_shape_file).geometries()), ccrs.PlateCarree() ) # output area extents = [99, 120, 0.5, 7.25] # base_map plotting function def plot_base(ax: plt.Axes): ax.set_extent(extents, crs=ccrs.PlateCarree()) # fake the ocean color ax.imshow(np.tile(np.array([[[178, 208, 254]]], dtype=np.uint8), [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1) # coastline, state, color ax.add_feature(se_asia, facecolor=cfeature.COLORS['land'], edgecolor='none', zorder=0) # overlay coastline, state without color ax.add_feature(se_asia, facecolor='none', edgecolor='gray', linewidth=0.5) ax.set_title('') ############################################################################## # Step 2: Plotting the swirls-radar-advection, nwp-bias-corrected, blended 3 hours ahead # fig: plt.Figure = plt.figure( figsize=(5 + 1, 3 * 2), frameon=False ) gs = GridSpec( 3, 1, figure=fig, wspace=0.03, hspace=0, top=0.95, bottom=0.05, left=0.17, right=0.845 ) for row in range(3): time_index = (row + 1) * 6 timelabel = basetime + pd.Timedelta(interval * (time_index), 'm') ax: plt.Axes = fig.add_subplot( gs[row, 0], projection=ccrs.PlateCarree() ) z = swirls[time_index].values lats = swirls[time_index].latitude lons = swirls[time_index].longitude title = 'SWIRLS Reflectivity' # plot base map plot_base(ax) # plot reflectivity ax.contourf( lons, lats, z, 60, transform=ccrs.PlateCarree(), cmap=cmap, norm=norm, levels=levels ) ax.set_title( f"{title}\n" + f"Initial @ {basetime.strftime('%H:%MZ')}", loc='left', fontsize=9 ) ax.set_title('') ax.set_title( f"Initial {basetime.strftime('%Y-%m-%d')} \n" + f"Forecast Valid @ {timelabel.strftime('%H:%MZ')} ", loc='right', fontsize=9 ) cbar_ax = fig.add_axes([0.9, 0.105, 0.04, 0.845]) cbar = fig.colorbar( scalar_map, cax=cbar_ax, ticks=levels[1:], extend='max', format='%.3g' ) cbar.ax.set_ylabel('Reflectivity (dBZ)', rotation=90) fig.savefig( os.path.join( OUTPUT_DIR, "swirls_ms_fcs.png" ), dpi=450, bbox_inches="tight", pad_inches=0.1 ) radar_image_time = pd.Timestamp.now() ###################################################################### # Checking run time of each component # -------------------------------------------------------------------- # print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"SLA time: {sla_time}") print(f"Plotting radar image time: {radar_image_time}") print(f"Time to initialise: {initialising_time - start_time}") print(f"Time to run rover: {rover_time - initialising_time}") print(f"Time to perform SLA: {sla_time - rover_time}") print(f"Time to plot radar image: {radar_image_time - sla_time}")