""" QPE (Manila) ==================================================== This example demonstrates how to perform QPE, using raingauge data from Manila and radar data from Subic. """ ########################################################### # Definitions # -------------------------------------------------------- # ######################################################################## # Import all required modules and methods: # Python package to allow system command line functions import os # Python package to manage warning message import warnings # Python package for time calculations import pandas as pd # Python package for numerical calculations import numpy as np # Python package for xarrays to read and handle netcdf data import xarray as xr # Python package for projection description import pyproj from pyresample import get_area_def # Python package for projection import cartopy.crs as ccrs # Python package for land/sea features import cartopy.feature as cfeature # Python package for reading map shape file import cartopy.io.shapereader as shpreader # Python package for creating plots from matplotlib import pyplot as plt # Python package for colorbars from matplotlib.colors import BoundaryNorm, ListedColormap # swirlspy raingauge data object from swirlspy.obs import Rain # swirlspy Philippine UF file parser function from swirlspy.rad.uf_ph import read_uf_ph # swirlspy raingauge data interpolate and blending from swirlspy.qpe.rfmap import rg_interpolate, comp_qpe, show_raingauge # swirlspy test data source locat utils function from swirlspy.qpe.utils import timestamps_ending, locate_file # swirlspy standardize data function from swirlspy.utils import FrameType, standardize_attr, conversion # directory constants from swirlspy.tests.samples import DATA_DIR from swirlspy.tests.outputs import OUTPUT_DIR warnings.filterwarnings("ignore") plt.switch_backend('agg') ################################################################### # Initialising # ----------------------------------------------------------------- # # This section demonstrates extracting raingauge and radar data. # # Step 1: Defining an end-time for accumulating rainfall. # acctime = pd.Timestamp('20180811112000').floor('min') acctime_str = acctime.strftime('%Y%m%d%H%M') #################################################################### # Step 2: Setting up directories for raingauge and radar files. # rad_dir = os.path.join(DATA_DIR, 'uf_ph/sub') rg_dir = os.path.join(DATA_DIR, 'rfmap') ################################################################### # Step 3: Generating timestamps and pattern for both radar and # raingauge files. # Timestamps of raingauges rg_timestrings = timestamps_ending( acctime + pd.Timedelta(minutes=10), duration=pd.Timedelta(hours=1), interval=pd.Timedelta(minutes=10) ) # Raingauge pattern rg_pattern = ['rf60m_20'+ts for ts in rg_timestrings] # Finding time nearest radar file # to accumulation end time minute = acctime.minute nearest_6min = acctime.minute // 10 * 10 nearest_rad_timestamp = pd.Timestamp( acctime_str[:-2]+f'{nearest_6min:02}' ) rad_timestrings = timestamps_ending( nearest_rad_timestamp, duration=pd.Timedelta(hours=1), interval=pd.Timedelta(minutes=10) ) ##################################################################### # Step 4: Extracting raingauge and radar files from # their respective directories. located_rg_files = [] for pat in rg_pattern: located_rg_files.append(locate_file(rg_dir, pat)) located_radar_files = [] for ts in rad_timestrings: located_radar_files.append(locate_file(rad_dir, ts)) ##################################################################### # Step 5: Read data from raingauge files into a Rain object. # Coordinates are geodetic, following that in the files. rg_object_geodetic = Rain( located_rg_files, 'WGS84', duration=pd.Timedelta(minutes=5), NAN=[3276.7, 32767] ) ###################################################################### # Step 6: Define the target grid as a pyresample AreaDefinition. # Defining target grid area_id = "epsg3123_240km" description = ("A 240 m resolution rectangular grid " "centred at Subic RADAR and extending to 240 km " "in each direction") proj_id = 'epsg3123' projection = ('+proj=tmerc +lat_0=0 ' '+lon_0=121 +k=0.99995 +x_0=500000 ' '+y_0=0 +ellps=clrk66 +towgs84=-127.62,-67.24,' '-47.04,-3.068,4.903,1.578,-1.06 +units=m ' '+no_defs') x_size = 1000 y_size = 1000 area_extent = (191376.04113, 1399386.68659, 671376.04113, 1879386.68659) area_def = get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) ######################################################################### # Step 7: Convert coordinates of raingauge object to desired projection. # In this example, the desired projection is PRS92. # This can be achieved by the .reproject() method of the Rain object. # inProj = pyproj.Proj(init="epsg:4326") outProj = pyproj.Proj(area_def.proj_str) rg_object = rg_object_geodetic.reproject(inProj, outProj, "PRS92") ###################################################################### # Step 8: Read radar files into xarray.DataArrays using read_uf_ph(). reflec_list = [] for file in located_radar_files: reflec = read_uf_ph( file, area_def=area_def, coord_label=['easting', 'northing'], indicator='deg_ppi', elevation=0.5 ) reflec_list.append(reflec) reflectivity = xr.concat(reflec_list, dim='time') standardize_attr(reflectivity, frame_type=FrameType.dBZ) ################################################################### # Accumulating and interpolating rainfall # ----------------------------------------------------------------- # # Interpolate rainfall recorded by raingauges into the user-defined grid # and accumulate radar rainfall over an hour # after making the necessary # adjustments. # ################################################################## # Step 1: Interpolate Rain object to user-defined grid. # In this example, a multiquadric Radial Basis Function # is used. # interpolated_rg = rg_interpolate( rg_object, area_def, 'rbf', coord_label=['easting', 'northing'] ) ############################################################################## # Step 2: Convert to radar reflectivity to rainrates, # convert rainrates to times of raingauges, # and accumulate rainfalls every 10 minutes. rainrates = conversion.to_rainfall_rate(reflectivity, False, a=300, b=1.4) # Convert time coordinates of rainrates from start time # to end time rainrates_time_endtime = rainrates.copy() rainrates_time_endtime.coords['time'] = \ [ pd.Timestamp(t) + pd.Timedelta(minutes=10) for t in rainrates.coords['time'].values ] standardize_attr(rainrates_time_endtime, frame_type=FrameType.mmph) rainfalls = conversion.to_rainfall_depth(rainrates_time_endtime) ############################################################################### # Step 3: Accumulate rainfall over an hour. acc_rf = conversion.acc_rainfall_depth( rainfalls, rg_object.end_time, rg_object.end_time, pd.Timedelta(minutes=60) ) ################################################################### # Compositing rainfall # ----------------------------------------------------------------- # # Perform compositing on radar and raingauge derived rainfall # to obtain a composite QPE. comprf = comp_qpe( area_def, rg_object=rg_object, rg_interp=interpolated_rg, rad_rf=acc_rf ) ################################################################### # Plotting # --------------------------------------------------------------- # # Plot composited radar and raingauge rainfall. # # Defining coastlines map_shape_file = os.path.join(DATA_DIR, "shape/rsmc") ocean_color = np.array([[[178, 208, 254]]], dtype=np.uint8) land_color = cfeature.COLORS['land'] coastline = cfeature.ShapelyFeature( list(shpreader.Reader(map_shape_file).geometries()), ccrs.PlateCarree() ) # Plotting function for neatness. def plot_map( da, rg_object, acctime, area_def, based='raingauge and radar', savepath='', area_extent=None ): """ A custom function for plotting a map. Parameters -------------- da: xarray.DataArray Contains data to be plotted. rg_object: Rain Contains raingauge data. acctime: pd.Timestamp Contains the endtime of the accumulation period. area_def: pyresample.geometry.AreaDefinition AreaDefinition of the grid. based: str Type of data plotted in the map. savepath: str Path to save the image to. area_extent: tuple Area extent (x0, x1, y0, y1) to be plotted. Defaults to None. """ # Defining the colour scheme levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = ListedColormap([ '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Plotting axes plt.figure(figsize=(24, 21)) crs = area_def.to_cartopy_crs() ax = plt.axes(projection=crs) if area_extent is not None: ax.set_extent(area_extent, crs=crs) # Plot data quadmesh = da.plot( cmap=cmap, norm=norm, extend='max', cbar_kwargs={'ticks': levels, 'format': '%.3g'} ) # Adjusting size of colorbar cb = quadmesh.colorbar cb.ax.set_ylabel( da.attrs['long_name']+'['+da.attrs['units']+']', fontsize=28 ) cb.ax.tick_params(labelsize=24) # Setting labels ax.xaxis.set_visible(True) ax.yaxis.set_visible(True) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(24) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(24) ax.xaxis.label.set_size(28) ax.yaxis.label.set_size(28) # ocean ax.imshow(np.tile(ocean_color, [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1) # coastline, color ax.add_feature(coastline, facecolor=land_color, edgecolor='none', zorder=0) # overlay coastline without color ax.add_feature(coastline, facecolor='none', edgecolor='gray', linewidth=0.5, zorder=3) # Show raingauge show_raingauge( rg_object, ax, show_value=True, color='red', markersize=20, fontsize=20 ) # Show title plt.title( (f"Last Hour Rainfall at {acctime.strftime('%H:%MH %d-%b-%Y')}\n" f"(based on {based} data)"), fontsize=32 ) plt.savefig(savepath) ############################################################################ # Plotting maps r = 64000 proj_site = reflectivity.proj_site area_extent = ( proj_site[0]-r, proj_site[0]+r, proj_site[1]-r, proj_site[1]+r ) # Raingauge only plot_map( interpolated_rg, rg_object, acctime, area_def, based='raingauge', savepath=os.path.join(OUTPUT_DIR, f'raingauge_{acctime_str}.png'), area_extent=area_extent ) # Radar only plot_map( acc_rf, rg_object, acctime, area_def, based='radar', savepath=os.path.join(OUTPUT_DIR, f'radar_{acctime_str}.png'), area_extent=area_extent ) # Composite raingauge and radar plot_map( comprf, rg_object, acctime, area_def, savepath=os.path.join(OUTPUT_DIR, f'comp_{acctime_str}.png'), area_extent=area_extent )