.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/qpe_manila.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_qpe_manila.py: QPE (Manila) ==================================================== This example demonstrates how to perform QPE, using raingauge data from Manila and radar data from Subic. .. GENERATED FROM PYTHON SOURCE LINES 10-13 Definitions -------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 15-16 Import all required modules and methods: .. GENERATED FROM PYTHON SOURCE LINES 16-58 .. code-block:: default # Python package to allow system command line functions import os # Python package to manage warning message import warnings # Python package for time calculations import pandas as pd # Python package for numerical calculations import numpy as np # Python package for xarrays to read and handle netcdf data import xarray as xr # Python package for projection description import pyproj from pyresample import get_area_def # Python package for projection import cartopy.crs as ccrs # Python package for land/sea features import cartopy.feature as cfeature # Python package for reading map shape file import cartopy.io.shapereader as shpreader # Python package for creating plots from matplotlib import pyplot as plt # Python package for colorbars from matplotlib.colors import BoundaryNorm, ListedColormap # swirlspy raingauge data object from swirlspy.obs import Rain # swirlspy Philippine UF file parser function from swirlspy.rad.uf_ph import read_uf_ph # swirlspy raingauge data interpolate and blending from swirlspy.qpe.rfmap import rg_interpolate, comp_qpe, show_raingauge # swirlspy test data source locat utils function from swirlspy.qpe.utils import timestamps_ending, locate_file # swirlspy standardize data function from swirlspy.utils import FrameType, standardize_attr, conversion # directory constants from swirlspy.tests.samples import DATA_DIR from swirlspy.tests.outputs import OUTPUT_DIR warnings.filterwarnings("ignore") plt.switch_backend('agg') .. GENERATED FROM PYTHON SOURCE LINES 59-66 Initialising ----------------------------------------------------------------- This section demonstrates extracting raingauge and radar data. Step 1: Defining an end-time for accumulating rainfall. .. GENERATED FROM PYTHON SOURCE LINES 66-70 .. code-block:: default acctime = pd.Timestamp('20180811112000').floor('min') acctime_str = acctime.strftime('%Y%m%d%H%M') .. GENERATED FROM PYTHON SOURCE LINES 71-73 Step 2: Setting up directories for raingauge and radar files. .. GENERATED FROM PYTHON SOURCE LINES 73-77 .. code-block:: default rad_dir = os.path.join(DATA_DIR, 'uf_ph/sub') rg_dir = os.path.join(DATA_DIR, 'rfmap') .. GENERATED FROM PYTHON SOURCE LINES 78-80 Step 3: Generating timestamps and pattern for both radar and raingauge files. .. GENERATED FROM PYTHON SOURCE LINES 80-106 .. code-block:: default # Timestamps of raingauges rg_timestrings = timestamps_ending( acctime + pd.Timedelta(minutes=10), duration=pd.Timedelta(hours=1), interval=pd.Timedelta(minutes=10) ) # Raingauge pattern rg_pattern = ['rf60m_20'+ts for ts in rg_timestrings] # Finding time nearest radar file # to accumulation end time minute = acctime.minute nearest_6min = acctime.minute // 10 * 10 nearest_rad_timestamp = pd.Timestamp( acctime_str[:-2]+f'{nearest_6min:02}' ) rad_timestrings = timestamps_ending( nearest_rad_timestamp, duration=pd.Timedelta(hours=1), interval=pd.Timedelta(minutes=10) ) .. GENERATED FROM PYTHON SOURCE LINES 107-109 Step 4: Extracting raingauge and radar files from their respective directories. .. GENERATED FROM PYTHON SOURCE LINES 109-120 .. code-block:: default located_rg_files = [] for pat in rg_pattern: located_rg_files.append(locate_file(rg_dir, pat)) located_radar_files = [] for ts in rad_timestrings: located_radar_files.append(locate_file(rad_dir, ts)) .. GENERATED FROM PYTHON SOURCE LINES 121-123 Step 5: Read data from raingauge files into a Rain object. Coordinates are geodetic, following that in the files. .. GENERATED FROM PYTHON SOURCE LINES 123-131 .. code-block:: default rg_object_geodetic = Rain( located_rg_files, 'WGS84', duration=pd.Timedelta(minutes=5), NAN=[3276.7, 32767] ) .. GENERATED FROM PYTHON SOURCE LINES 132-133 Step 6: Define the target grid as a pyresample AreaDefinition. .. GENERATED FROM PYTHON SOURCE LINES 133-152 .. code-block:: default # Defining target grid area_id = "epsg3123_240km" description = ("A 240 m resolution rectangular grid " "centred at Subic RADAR and extending to 240 km " "in each direction") proj_id = 'epsg3123' projection = ('+proj=tmerc +lat_0=0 ' '+lon_0=121 +k=0.99995 +x_0=500000 ' '+y_0=0 +ellps=clrk66 +towgs84=-127.62,-67.24,' '-47.04,-3.068,4.903,1.578,-1.06 +units=m ' '+no_defs') x_size = 1000 y_size = 1000 area_extent = (191376.04113, 1399386.68659, 671376.04113, 1879386.68659) area_def = get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) .. GENERATED FROM PYTHON SOURCE LINES 153-157 Step 7: Convert coordinates of raingauge object to desired projection. In this example, the desired projection is PRS92. This can be achieved by the .reproject() method of the Rain object. .. GENERATED FROM PYTHON SOURCE LINES 157-163 .. code-block:: default inProj = pyproj.Proj(init="epsg:4326") outProj = pyproj.Proj(area_def.proj_str) rg_object = rg_object_geodetic.reproject(inProj, outProj, "PRS92") .. GENERATED FROM PYTHON SOURCE LINES 164-165 Step 8: Read radar files into xarray.DataArrays using read_uf_ph(). .. GENERATED FROM PYTHON SOURCE LINES 165-179 .. code-block:: default reflec_list = [] for file in located_radar_files: reflec = read_uf_ph( file, area_def=area_def, coord_label=['easting', 'northing'], indicator='deg_ppi', elevation=0.5 ) reflec_list.append(reflec) reflectivity = xr.concat(reflec_list, dim='time') standardize_attr(reflectivity, frame_type=FrameType.dBZ) .. GENERATED FROM PYTHON SOURCE LINES 180-188 Accumulating and interpolating rainfall ----------------------------------------------------------------- Interpolate rainfall recorded by raingauges into the user-defined grid and accumulate radar rainfall over an hour after making the necessary adjustments. .. GENERATED FROM PYTHON SOURCE LINES 190-194 Step 1: Interpolate Rain object to user-defined grid. In this example, a multiquadric Radial Basis Function is used. .. GENERATED FROM PYTHON SOURCE LINES 194-201 .. code-block:: default interpolated_rg = rg_interpolate( rg_object, area_def, 'rbf', coord_label=['easting', 'northing'] ) .. GENERATED FROM PYTHON SOURCE LINES 202-205 Step 2: Convert to radar reflectivity to rainrates, convert rainrates to times of raingauges, and accumulate rainfalls every 10 minutes. .. GENERATED FROM PYTHON SOURCE LINES 205-220 .. code-block:: default rainrates = conversion.to_rainfall_rate(reflectivity, False, a=300, b=1.4) # Convert time coordinates of rainrates from start time # to end time rainrates_time_endtime = rainrates.copy() rainrates_time_endtime.coords['time'] = \ [ pd.Timestamp(t) + pd.Timedelta(minutes=10) for t in rainrates.coords['time'].values ] standardize_attr(rainrates_time_endtime, frame_type=FrameType.mmph) rainfalls = conversion.to_rainfall_depth(rainrates_time_endtime) .. GENERATED FROM PYTHON SOURCE LINES 221-222 Step 3: Accumulate rainfall over an hour. .. GENERATED FROM PYTHON SOURCE LINES 222-230 .. code-block:: default acc_rf = conversion.acc_rainfall_depth( rainfalls, rg_object.end_time, rg_object.end_time, pd.Timedelta(minutes=60) ) .. GENERATED FROM PYTHON SOURCE LINES 231-236 Compositing rainfall ----------------------------------------------------------------- Perform compositing on radar and raingauge derived rainfall to obtain a composite QPE. .. GENERATED FROM PYTHON SOURCE LINES 236-244 .. code-block:: default comprf = comp_qpe( area_def, rg_object=rg_object, rg_interp=interpolated_rg, rad_rf=acc_rf ) .. GENERATED FROM PYTHON SOURCE LINES 245-250 Plotting --------------------------------------------------------------- Plot composited radar and raingauge rainfall. .. GENERATED FROM PYTHON SOURCE LINES 250-370 .. code-block:: default # Defining coastlines map_shape_file = os.path.join(DATA_DIR, "shape/rsmc") ocean_color = np.array([[[178, 208, 254]]], dtype=np.uint8) land_color = cfeature.COLORS['land'] coastline = cfeature.ShapelyFeature( list(shpreader.Reader(map_shape_file).geometries()), ccrs.PlateCarree() ) # Plotting function for neatness. def plot_map( da, rg_object, acctime, area_def, based='raingauge and radar', savepath='', area_extent=None ): """ A custom function for plotting a map. Parameters -------------- da: xarray.DataArray Contains data to be plotted. rg_object: Rain Contains raingauge data. acctime: pd.Timestamp Contains the endtime of the accumulation period. area_def: pyresample.geometry.AreaDefinition AreaDefinition of the grid. based: str Type of data plotted in the map. savepath: str Path to save the image to. area_extent: tuple Area extent (x0, x1, y0, y1) to be plotted. Defaults to None. """ # Defining the colour scheme levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = ListedColormap([ '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Plotting axes plt.figure(figsize=(24, 21)) crs = area_def.to_cartopy_crs() ax = plt.axes(projection=crs) if area_extent is not None: ax.set_extent(area_extent, crs=crs) # Plot data quadmesh = da.plot( cmap=cmap, norm=norm, extend='max', cbar_kwargs={'ticks': levels, 'format': '%.3g'} ) # Adjusting size of colorbar cb = quadmesh.colorbar cb.ax.set_ylabel( da.attrs['long_name']+'['+da.attrs['units']+']', fontsize=28 ) cb.ax.tick_params(labelsize=24) # Setting labels ax.xaxis.set_visible(True) ax.yaxis.set_visible(True) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(24) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(24) ax.xaxis.label.set_size(28) ax.yaxis.label.set_size(28) # ocean ax.imshow(np.tile(ocean_color, [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1) # coastline, color ax.add_feature(coastline, facecolor=land_color, edgecolor='none', zorder=0) # overlay coastline without color ax.add_feature(coastline, facecolor='none', edgecolor='gray', linewidth=0.5, zorder=3) # Show raingauge show_raingauge( rg_object, ax, show_value=True, color='red', markersize=20, fontsize=20 ) # Show title plt.title( (f"Last Hour Rainfall at {acctime.strftime('%H:%MH %d-%b-%Y')}\n" f"(based on {based} data)"), fontsize=32 ) plt.savefig(savepath) .. GENERATED FROM PYTHON SOURCE LINES 371-409 .. code-block:: default # Plotting maps r = 64000 proj_site = reflectivity.proj_site area_extent = ( proj_site[0]-r, proj_site[0]+r, proj_site[1]-r, proj_site[1]+r ) # Raingauge only plot_map( interpolated_rg, rg_object, acctime, area_def, based='raingauge', savepath=os.path.join(OUTPUT_DIR, f'raingauge_{acctime_str}.png'), area_extent=area_extent ) # Radar only plot_map( acc_rf, rg_object, acctime, area_def, based='radar', savepath=os.path.join(OUTPUT_DIR, f'radar_{acctime_str}.png'), area_extent=area_extent ) # Composite raingauge and radar plot_map( comprf, rg_object, acctime, area_def, savepath=os.path.join(OUTPUT_DIR, f'comp_{acctime_str}.png'), area_extent=area_extent ) .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/images/sphx_glr_qpe_manila_001.png :alt: Last Hour Rainfall at 11:20H 11-Aug-2018 (based on raingauge data) :srcset: /auto_examples/images/sphx_glr_qpe_manila_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/images/sphx_glr_qpe_manila_002.png :alt: Last Hour Rainfall at 11:20H 11-Aug-2018 (based on radar data) :srcset: /auto_examples/images/sphx_glr_qpe_manila_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/images/sphx_glr_qpe_manila_003.png :alt: Last Hour Rainfall at 11:20H 11-Aug-2018 (based on raingauge and radar data) :srcset: /auto_examples/images/sphx_glr_qpe_manila_003.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 35.629 seconds) .. _sphx_glr_download_auto_examples_qpe_manila.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: qpe_manila.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: qpe_manila.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_