.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/sprog_hk.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_sprog_hk.py: SPROG (Hong Kong) ======================================================== This example demonstrates how to use SPROG to forecast rainfall up to three hours, using rain guage and radar data from Hong Kong. .. GENERATED FROM PYTHON SOURCE LINES 10-13 Definitions -------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 15-16 Import all required modules and methods: .. GENERATED FROM PYTHON SOURCE LINES 16-61 .. code-block:: default # Python package to allow system command line functions import os # Python package to manage warning message import warnings # Python package for time calculations import pandas as pd # Python package for numerical calculations import numpy as np # Python package for xarrays to read and handle netcdf data import xarray as xr # Python package for text formatting import textwrap # Python package for projection description from pyresample import get_area_def # Python package for projection import cartopy.crs as ccrs # Python package for land/sea features import cartopy.feature as cfeature # Python package for reading map shape file import cartopy.io.shapereader as shpreader # Python package for creating plots from matplotlib import pyplot as plt # Python package for output grid format from matplotlib.gridspec import GridSpec # Python package for colorbars from matplotlib.colors import BoundaryNorm, ListedColormap from matplotlib.cm import ScalarMappable # swirlspy data parser function from swirlspy.rad.iris import read_iris_grid # swirlspy test data source locat utils function from swirlspy.qpe.utils import timestamps_ending, locate_file # swirlspy regrid function from swirlspy.core.resample import grid_resample # swirlspy standardize data function from swirlspy.utils import FrameType, standardize_attr, conversion # swirlspy pysteps integrated package from swirlspy.qpf import sprog, dense_lucaskanade # directory constants from swirlspy.tests.samples import DATA_DIR from swirlspy.tests.outputs import OUTPUT_DIR warnings.filterwarnings("ignore") .. GENERATED FROM PYTHON SOURCE LINES 62-63 Define working directory and nowcast parameters: .. GENERATED FROM PYTHON SOURCE LINES 63-71 .. code-block:: default radar_dir = os.path.abspath( os.path.join(DATA_DIR, 'iris/ppi') ) # Set nowcast parameters n_timesteps = int(3 * 60 / 6) # 3 hours, each timestamp is 6 minutes .. GENERATED FROM PYTHON SOURCE LINES 72-73 Define the user grid: .. GENERATED FROM PYTHON SOURCE LINES 73-93 .. code-block:: default area_id = "hk1980_250km" description = ( "A 250 m resolution rectangular grid centred at HKO and extending" "to 250 km in each direction in HK1980 easting/northing coordinates" ) proj_id = 'hk1980' projection = ( '+proj=tmerc +lat_0=22.31213333333334 ' '+lon_0=114.1785555555556 +k=1 +x_0=836694.05 ' '+y_0=819069.8 +ellps=intl +towgs84=-162.619,-276.959,' '-161.764,0.067753,-2.24365,-1.15883,-1.09425 +units=m +no_defs' ) x_size = 500 y_size = 500 area_extent = (587000, 569000, 1087000, 1069000) area_def_tgt = get_area_def( area_id, description, proj_id, projection, x_size, y_size, area_extent ) .. GENERATED FROM PYTHON SOURCE LINES 94-95 Define the base map: .. GENERATED FROM PYTHON SOURCE LINES 95-129 .. code-block:: default # Load the shape of Hong Kong map_shape_file = os.path.abspath(os.path.join( DATA_DIR, 'shape/hk' )) # coastline and province map_with_province = cfeature.ShapelyFeature( list(shpreader.Reader(map_shape_file).geometries()), ccrs.PlateCarree() ) # define the plot function def plot_base(ax: plt.Axes, extents: list, crs: ccrs.Projection): ax.set_extent(extents, crs=crs) # fake the ocean color ax.imshow( np.tile(np.array([[[178, 208, 254]]], dtype=np.uint8), [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180], zorder=-1 ) # coastline, province and state, color ax.add_feature( map_with_province, facecolor=cfeature.COLORS['land'], edgecolor='none', zorder=0 ) # overlay coastline, province and state without color ax.add_feature( map_with_province, facecolor='none', edgecolor='gray', linewidth=0.5 ) ax.set_title('') .. GENERATED FROM PYTHON SOURCE LINES 130-131 Log the start time for reference: .. GENERATED FROM PYTHON SOURCE LINES 131-136 .. code-block:: default start_time = pd.Timestamp.now() .. GENERATED FROM PYTHON SOURCE LINES 137-140 Loading Radar Data --------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 140-192 .. code-block:: default # Specify the basetime basetime = pd.Timestamp('201902190800') # Generate a list of timestamps of the radar data files located_files = [] radar_ts = timestamps_ending( basetime, duration=pd.Timedelta(minutes=60), exclude_end=False ) for timestamp in radar_ts: located_files.append(locate_file(radar_dir, timestamp)) # Read in the radar data reflectivity_list = [] # stores reflec from read_iris_grid() for filename in located_files: reflec = read_iris_grid(filename) reflectivity_list.append(reflec) # Reproject the radar data to the user-defined grid area_def_src = reflectivity_list[0].attrs['area_def'] reproj_reflectivity_list = [] for reflec in reflectivity_list: reproj_reflec = grid_resample( reflec, area_def_src, area_def_tgt, coord_label=['x', 'y'] ) reproj_reflectivity_list.append(reproj_reflec) # Standardize reflectivity xarrays raw_frames = xr.concat(reproj_reflectivity_list, dim='time').sortby(['y'], ascending=False) standardize_attr(raw_frames, frame_type=FrameType.dBZ) # Transform from reflecitiy to rainfall rate frames = conversion.to_rainfall_rate(raw_frames, True, a=58.53, b=1.56) # Set the fill value frames.attrs['zero_value'] = -15.0 # Apply threshold to -10dBR i.e. 0.1mm/h threshold = -10.0 frames.values[frames.values < threshold] = frames.attrs['zero_value'] # Set missing values with the fill value frames.values[~np.isfinite(frames.values)] = frames.attrs['zero_value'] # Log the time for record initialising_time = pd.Timestamp.now() .. GENERATED FROM PYTHON SOURCE LINES 193-196 Running Lucas Kanade Optical flow and S-PROG -------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 196-216 .. code-block:: default # Estimate the motion field motion = dense_lucaskanade(frames) motion_time = pd.Timestamp.now() # Generate forecast rainrate field forcast_frames = sprog( frames, motion, n_timesteps, n_cascade_levels=8, R_thr=threshold, decomp_method="fft", bandpass_filter_method="gaussian", probmatching_method="mean", ) sprog_time = pd.Timestamp.now() .. rst-class:: sphx-glr-script-out .. code-block:: none Pysteps configuration file found at: /opt/conda/envs/swirlspy/lib/python3.6/site-packages/pysteps/pystepsrc Computing S-PROG nowcast: ------------------------- Inputs: ------- input dimensions: 500x500 Methods: -------- extrapolation: semilagrangian bandpass filter: gaussian decomposition: fft conditional statistics: no probability matching: mean FFT method: numpy domain: spatial Parameters: ----------- number of time steps: 30 parallel threads: 1 number of cascade levels: 8 order of the AR(p) model: 2 precip. intensity threshold: -10 ************************************************ * Correlation coefficients for cascade levels: * ************************************************ ----------------------------------------- | Level | Lag-1 | Lag-2 | ----------------------------------------- | 1 | 0.998920 | 0.996649 | ----------------------------------------- | 2 | 0.998260 | 0.995759 | ----------------------------------------- | 3 | 0.991719 | 0.979920 | ----------------------------------------- | 4 | 0.968905 | 0.917719 | ----------------------------------------- | 5 | 0.855422 | 0.667819 | ----------------------------------------- | 6 | 0.493524 | 0.215498 | ----------------------------------------- | 7 | 0.084985 | 0.006179 | ----------------------------------------- | 8 | -0.003395 | 0.002382 | ----------------------------------------- **************************************** * AR(p) parameters for cascade levels: * **************************************** ------------------------------------------------------ | Level | Phi-1 | Phi-2 | Phi-0 | ------------------------------------------------------ | 1 | 1.550586 | -0.552262 | 0.038733 | ------------------------------------------------------ | 2 | 1.217599 | -0.219721 | 0.057523 | ------------------------------------------------------ | 3 | 1.207339 | -0.217421 | 0.125356 | ------------------------------------------------------ | 4 | 1.302167 | -0.343957 | 0.232335 | ------------------------------------------------------ | 5 | 1.059279 | -0.238312 | 0.503009 | ------------------------------------------------------ | 6 | 0.511836 | -0.037105 | 0.869133 | ------------------------------------------------------ | 7 | 0.085074 | -0.001051 | 0.996382 | ------------------------------------------------------ | 8 | -0.003387 | 0.002370 | 0.999991 | ------------------------------------------------------ Starting nowcast computation. Computing nowcast for time step 1... done. Computing nowcast for time step 2... done. Computing nowcast for time step 3... done. Computing nowcast for time step 4... done. Computing nowcast for time step 5... done. Computing nowcast for time step 6... done. Computing nowcast for time step 7... done. Computing nowcast for time step 8... done. Computing nowcast for time step 9... done. Computing nowcast for time step 10... done. Computing nowcast for time step 11... done. Computing nowcast for time step 12... done. Computing nowcast for time step 13... done. Computing nowcast for time step 14... done. Computing nowcast for time step 15... done. Computing nowcast for time step 16... done. Computing nowcast for time step 17... done. Computing nowcast for time step 18... done. Computing nowcast for time step 19... done. Computing nowcast for time step 20... done. Computing nowcast for time step 21... done. Computing nowcast for time step 22... done. Computing nowcast for time step 23... done. Computing nowcast for time step 24... done. Computing nowcast for time step 25... done. Computing nowcast for time step 26... done. Computing nowcast for time step 27... done. Computing nowcast for time step 28... done. Computing nowcast for time step 29... done. Computing nowcast for time step 30... done. .. GENERATED FROM PYTHON SOURCE LINES 217-222 Generating radar reflectivity maps ---------------------------------- Define the color scale and format of the plot. .. GENERATED FROM PYTHON SOURCE LINES 222-336 .. code-block:: default # Defining colour scale and format. levels = [ -32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44, 47, 50, 53, 56, 58, 60, 62 ] cmap = ListedColormap([ '#FFFFFF00', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433', '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200', '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) mappable = ScalarMappable(cmap=cmap, norm=norm) mappable.set_array([]) # Defining the crs crs = area_def_tgt.to_cartopy_crs() # Defining area x = frames.coords['x'].values y = frames.coords['y'].values x_d = x[1] - x[0] y_d = y[1] - y[0] extents = [x[0], y[0], x[-1], y[-1]] # Generating a time steps for every hour time_steps = [ basetime + pd.Timedelta(minutes=6*i) for i in range(n_timesteps + 1) if i % 10 == 0 ] ref_frames = conversion.to_reflectivity(forcast_frames, True) ref_frames.data[ref_frames.data < 0.1] = np.nan ref_frames = xr.concat([raw_frames[:-1, ...], ref_frames], dim='time') ref_frames.attrs['values_name'] = 'Reflectivity 2km CAPPI' standardize_attr(ref_frames) qx = motion.coords['x'].values[::5] qy = motion.coords['y'].values[::5] qu = motion.values[0, ::5, ::5] qv = motion.values[1, ::5, ::5] fig: plt.Figure = plt.figure(figsize=(8, 8), frameon=False) gs = GridSpec( 2, 2, figure=fig, wspace=0.03, hspace=-0.25, top=0.95, bottom=0.05, left=0.17, right=0.845 ) for i, t in enumerate(time_steps): row = i // 2 col = i % 2 ax = fig.add_subplot(gs[row, col], projection=crs) # plot base map plot_base(ax, extents, crs) # plot reflectivity frame = ref_frames.sel(time=t) im = ax.imshow(frame.values, cmap=cmap, norm=norm, interpolation='nearest', extent=extents) # plot motion vector ax.quiver(qx, qy, qu, qv, pivot='mid', regrid_shape=20) ax.text( extents[0], extents[1], textwrap.dedent( """ Reflectivity Based @ {baseTime} """ ).format( baseTime=basetime.strftime('%H:%MH') ).strip(), fontsize=10, va='bottom', ha='left', linespacing=1 ) ax.text( extents[2] - (extents[2] - extents[0]) * 0.03, extents[1], textwrap.dedent( """ {validDate} Valid @ {validTime} """ ).format( validDate=basetime.strftime('%Y-%m-%d'), validTime=t.strftime('%H:%MH') ).strip(), fontsize=10, va='bottom', ha='right', linespacing=1 ) cbar_ax = fig.add_axes([0.875, 0.125, 0.03, 0.75]) cbar = fig.colorbar( mappable, cax=cbar_ax, ticks=levels[1:], extend='max', format='%.3g') cbar.ax.set_ylabel(ref_frames.attrs['values_name'], rotation=90) fig.savefig( os.path.join( OUTPUT_DIR, "sprog-reflectivity.png" ), bbox_inches='tight' ) radar_image_time = pd.Timestamp.now() .. image-sg:: /auto_examples/images/sphx_glr_sprog_hk_001.png :alt: sprog hk :srcset: /auto_examples/images/sphx_glr_sprog_hk_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 337-343 Accumulating hourly rainfall for 3-hour forecast ------------------------------------------------ Hourly accumulated rainfall is calculated every 30 minutes, the first endtime is the basetime i.e. T+30min. .. GENERATED FROM PYTHON SOURCE LINES 343-362 .. code-block:: default # Optional, convert to rainfall depth rf_frames = conversion.to_rainfall_depth(ref_frames, a=58.53, b=1.56) # Compute hourly accumulated rainfall every 60 minutes. acc_rf_frames = conversion.acc_rainfall_depth( rf_frames, basetime, basetime + pd.Timedelta(hours=3), pd.Timedelta(minutes=60) ) # Replace zero value with NaN acc_rf_frames.data[acc_rf_frames.data <= acc_rf_frames.attrs['zero_value']] = np.nan acc_time = pd.Timestamp.now() .. GENERATED FROM PYTHON SOURCE LINES 363-366 Generating radar reflectivity maps ----------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 366-453 .. code-block:: default # Defining colour scale and format. levels = [ 0, 0.5, 2, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 300, 400, 500, 600, 700 ] cmap = ListedColormap([ '#ffffff00', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646', '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063', '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd' ]) norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) mappable = ScalarMappable(cmap=cmap, norm=norm) mappable.set_array([]) fig: plt.Figure = plt.figure(figsize=(8, 8), frameon=False) gs = GridSpec( 2, 2, figure=fig, wspace=0.03, hspace=-0.25, top=0.95, bottom=0.05, left=0.17, right=0.845 ) for i, t in enumerate(acc_rf_frames.coords['time'].values): row = i // 2 col = i % 2 ax = fig.add_subplot(gs[row, col], projection=crs) # plot base map plot_base(ax, extents, crs) # plot accumulated rainfall depth t = pd.Timestamp(t) frame = acc_rf_frames.sel(time=t) im = ax.imshow(frame.values, cmap=cmap, norm=norm, interpolation='nearest', extent=extents) ax.text( extents[0], extents[1], textwrap.dedent( """ Hourly Rainfall Based @ {baseTime} """ ).format( baseTime=basetime.strftime('%H:%MH') ).strip(), fontsize=10, va='bottom', ha='left', linespacing=1 ) ax.text( extents[2] - (extents[2] - extents[0]) * 0.03, extents[1], textwrap.dedent( """ {validDate} Valid @ {validTime} """ ).format( validDate=basetime.strftime('%Y-%m-%d'), validTime=t.strftime('%H:%MH') ).strip(), fontsize=10, va='bottom', ha='right', linespacing=1 ) cbar_ax = fig.add_axes([0.875, 0.125, 0.03, 0.75]) cbar = fig.colorbar( mappable, cax=cbar_ax, ticks=levels[1:], extend='max', format='%.3g') cbar.ax.set_ylabel(acc_rf_frames.attrs['values_name'], rotation=90) fig.savefig( os.path.join( OUTPUT_DIR, "sprog-rainfall.png" ), bbox_inches='tight' ) ptime = pd.Timestamp.now() .. image-sg:: /auto_examples/images/sphx_glr_sprog_hk_002.png :alt: sprog hk :srcset: /auto_examples/images/sphx_glr_sprog_hk_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 454-457 Checking run time of each component -------------------------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 457-474 .. code-block:: default print(f"Start time: {start_time}") print(f"Initialising time: {initialising_time}") print(f"Motion field time: {motion_time}") print(f"S-PROG time: {sprog_time}") print(f"Plotting radar image time: {radar_image_time}") print(f"Accumulating rainfall time: {acc_time}") print(f"Plotting rainfall maps: {ptime}") print(f"Time to initialise: {initialising_time - start_time}") print(f"Time to run motion field: {motion_time - initialising_time}") print(f"Time to perform S-PROG: {sprog_time - motion_time}") print(f"Time to plot radar image: {radar_image_time - sprog_time}") print(f"Time to accumulate rainfall: {acc_time - radar_image_time}") print(f"Time to plot rainfall maps: {ptime - acc_time}") print(f"Total: {ptime - start_time}") .. rst-class:: sphx-glr-script-out .. code-block:: none Start time: 2024-04-22 04:17:32.285225 Initialising time: 2024-04-22 04:17:39.219461 Motion field time: 2024-04-22 04:17:41.488724 S-PROG time: 2024-04-22 04:17:47.403227 Plotting radar image time: 2024-04-22 04:18:00.938439 Accumulating rainfall time: 2024-04-22 04:18:01.883815 Plotting rainfall maps: 2024-04-22 04:18:13.352162 Time to initialise: 0 days 00:00:06.934236 Time to run motion field: 0 days 00:00:02.269263 Time to perform S-PROG: 0 days 00:00:05.914503 Time to plot radar image: 0 days 00:00:13.535212 Time to accumulate rainfall: 0 days 00:00:00.945376 Time to plot rainfall maps: 0 days 00:00:11.468347 Total: 0 days 00:00:41.066937 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 41.538 seconds) .. _sphx_glr_download_auto_examples_sprog_hk.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: sprog_hk.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: sprog_hk.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_