QPF (Laos)

This example demonstrates how to perform operational deterministic QPF up to three hours using reflectivity data.

Definitions

Import all required modules and methods:

# Python package to allow system command line functions
import os
# Python package to manage warning message
import warnings
# Python package for timestamp
import pandas as pd
# Python package for xarrays to read and handle netcdf data
import xarray as xr
# Python package for numerical calculations
import numpy as np
# Python com-swirls package to standardize attributes
from swirlspy.utils import standardize_attr, FrameType
# Python com-swirls package to calculate motion field (rover) and semi-lagrangian advection
from swirlspy.qpf import rover, sla
# directory constants
from swirlspy.tests.samples import DATA_DIR
from swirlspy.tests.outputs import OUTPUT_DIR

warnings.filterwarnings("ignore")

# data files
data_paths = [
    os.path.abspath(os.path.join(DATA_DIR, 'laos_h8/laos_20190731070000.nc')),
    os.path.abspath(os.path.join(DATA_DIR, 'laos_h8/laos_20190731071000.nc')),
]

Initialising

This section demonstrates preprocessing reflectivity data.

# Read data from saved files
reflec_datas = []
for file_path in data_paths:
    d = xr.open_dataarray(file_path)
    reflec_datas.append(d)

# Concatenate list on time axis
data_frames = xr.concat(reflec_datas, dim='time')

# Make sure data is ordered by time
data_frames = data_frames.sortby('time', ascending=True)

Nowcast (SWIRLS-Radar-Advection)

The swirls radar advection was performed using the observed radar data Firstly, some attributes necessary for com-swirls input variable is added Secondly, rover function is invoked to compute the motion field Thirdly, semi-lagrangian advection is performed to advect the radar data using the rover motion field

# Adding in some attributes that is step_size <10 mins in pandas.Timedelta>, zero_value <numpy.nan> and frame_type <FrameType.dBZ>
standardize_attr(data_frames)

# Rover motion field computation
motion = rover(data_frames)

rover_time = pd.Timestamp.now()

# Semi-Lagrangian Advection
swirls = sla(data_frames, motion, 17)  # Radar time goes from earliest to latest
RUNNING 'rover' FOR EXTRAPOLATION.....

Plotting result

Step 1: Import plotting library and necessary library

# Python package for reading map shape file
import cartopy.io.shapereader as shpreader
# Python package for land/sea features
import cartopy.feature as cfeature
# Python package for projection
import cartopy.crs as ccrs
# Python package for creating plots
from matplotlib import pyplot as plt
# Python package for output import grid
from matplotlib.gridspec import GridSpec
# Python package for colorbars
from matplotlib.colors import BoundaryNorm, ListedColormap
# Python package for scalar data to RGBA mapping
from matplotlib.cm import ScalarMappable

plt.switch_backend('agg')

Step 2: Defining the dBZ levels, colorbar parameters and projection

# levels of colorbar (dBZ)
levels = [-32768, 10, 15, 20, 24, 28, 32, 34, 38, 41, 44,
          47, 50, 53, 56, 58, 60, 62]
# hko colormap for dBZ at each levels
cmap = ListedColormap([
    '#FFFFFF00', '#08C5F5', '#0091F3', '#3898FF', '#008243', '#00A433',
    '#00D100', '#01F508', '#77FF00', '#E0D100', '#FFDC01', '#EEB200',
    '#F08100', '#F00101', '#E20200', '#B40466', '#ED02F0'
])
# boundary
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
# scalar data to RGBA mapping
scalar_map = ScalarMappable(cmap=cmap, norm=norm)
scalar_map.set_array([])
# Defining plot parameters
map_shape_file = os.path.abspath(os.path.join(
    DATA_DIR,
    'shape/se_asia'
))
# coastline and province
se_asia = cfeature.ShapelyFeature(
    list(shpreader.Reader(map_shape_file).geometries()),
    ccrs.PlateCarree()
)
# output area
extents = [99.5, 108., 13.75, 22.75]

# base_map plotting function
def plot_base(ax: plt.Axes):
    ax.set_extent(extents, crs=ccrs.PlateCarree())

    # fake the ocean color
    ax.imshow(np.tile(np.array([[[178, 208, 254]]],
                               dtype=np.uint8), [2, 2, 1]),
              origin='upper',
              transform=ccrs.PlateCarree(),
              extent=[-180, 180, -180, 180],
              zorder=-1)
    # coastline, state, color
    ax.add_feature(se_asia,
                   facecolor=cfeature.COLORS['land'], edgecolor='none', zorder=0)
    # overlay coastline, state without color
    ax.add_feature(se_asia, facecolor='none',
                   edgecolor='gray', linewidth=0.5)

    ax.set_title('')

Step 3: Filtering values <= 15dbZ are not plotted

swirls = swirls.where(swirls > 15, np.nan)

# Defining motion quivers
qx = motion.coords['x'].values[::5]
qy = motion.coords['y'].values[::5]
qu = motion.values[0, ::5, ::5]
qv = motion.values[1, ::5, ::5]

Step 4: Plotting the swirls-radar-advection, nwp-bias-corrected, blended 3 hours ahead

fig: plt.Figure = plt.figure(
    figsize=(3 * 3.5 + 1, 3),
    frameon=False
)
gs = GridSpec(
    1, 3, figure=fig,
    wspace=0, hspace=0, top=0.95, bottom=0.05, left=0.17, right=0.845
)

basetime = pd.Timestamp(swirls.time.values[0])
interval = pd.Timedelta(swirls.attrs['step_size'])

for col in range(3):
    time_index = (col + 1) * 6 - 1
    timelabel = basetime + pd.Timedelta(interval * (time_index + 1), 'm')

    ax: plt.Axes = fig.add_subplot(
        gs[0, col],
        projection=ccrs.PlateCarree()
    )
    z = swirls[time_index].values
    y = swirls[time_index].y
    x = swirls[time_index].x

    # plot base map
    plot_base(ax)

    # plot reflectivity
    ax.contourf(
        x, y, z, 60,
        transform=ccrs.PlateCarree(),
        cmap=cmap, norm=norm, levels=levels
    )

    # plot motion field
    ax.quiver(qx, qy, qu, qv, pivot='mid', regrid_shape=20)

    ax.set_title(
        f"Nowcast\n" +
        f"Initial @ {basetime.strftime('%H:%MZ')}",
        loc='left', fontsize=8.75
    )
    ax.set_title('')
    ax.set_title(
        f"Initial {basetime.strftime('%Y-%m-%d')} \n" +
        f"Valid @ {timelabel.strftime('%H:%MZ')} ",
        loc='right', fontsize=8.75
    )

cbar_ax = fig.add_axes([0.85, 0.105, 0.01, 0.845])
cbar = fig.colorbar(
    scalar_map, cax=cbar_ax, ticks=levels[1:], extend='max', format='%.3g'
)
cbar.ax.set_ylabel('Reflectivity (dBZ)', rotation=90)

fig.savefig(
    os.path.join(
        OUTPUT_DIR,
        "qpf_laos.png"
    ),
    dpi=450,
    bbox_inches="tight",
    pad_inches=0.25
)

radar_image_time = pd.Timestamp.now()
Nowcast Initial @ 07:10Z, Initial 2019-07-31  Valid @ 08:10Z , Nowcast Initial @ 07:10Z, Initial 2019-07-31  Valid @ 09:10Z , Nowcast Initial @ 07:10Z, Initial 2019-07-31  Valid @ 10:10Z

Total running time of the script: ( 0 minutes 19.753 seconds)

Gallery generated by Sphinx-Gallery