QPE (Hong Kong)

This example demonstrates how to perform QPE, using raingauge and radar data from Hong Kong.

Definitions

Import all required modules and methods:

# Python package to allow system command line functions
import os
# Python package to manage warning message
import warnings
# Python package for time calculations
import pandas as pd
# Python package for numerical calculations
import numpy as np
# Python package for xarrays to read and handle netcdf data
import xarray as xr
# Python package for projection description
import pyproj
from pyresample import get_area_def
from sklearn.gaussian_process import kernels
# Python package for reading map shape file
import cartopy.io.shapereader as shpreader
# Python package for creating plots
from matplotlib import pyplot as plt
# Python package for colorbars
from matplotlib.colors import BoundaryNorm, ListedColormap

# swirlspy regrid function
from swirlspy.core.resample import grid_resample
# swirlspy raingauge data object
from swirlspy.obs import Rain
# swirlspy iris parser function
from swirlspy.rad.iris import read_iris_grid
# swirlspy raingauge data interpolate and blending
from swirlspy.qpe.rfmap import rg_interpolate, comp_qpe
# swirlspy test data source locat utils function
from swirlspy.qpe.utils import timestamps_ending, locate_file
# swirlspy standardize data function
from swirlspy.utils import FrameType, standardize_attr, conversion
# directory constants
from swirlspy.tests.samples import DATA_DIR
from swirlspy.tests.outputs import OUTPUT_DIR

warnings.filterwarnings("ignore")
plt.switch_backend('agg')

Initialising

This section demonstrates extracting raingauge and radar data.

Step 1: Defining an end-time for accumulating rainfall.

acctime = pd.Timestamp('20190420150000').floor('min')
acctime_str = acctime.strftime('%Y%m%d%H%M')

Step 2: Setting up directories for raingauge and radar files.

rad_dir = os.path.join(DATA_DIR, 'iris')
rg_dir = os.path.join(DATA_DIR, 'rfmap')

Step 3: Generating timestamps and pattern for both radar and raingauge files.

# Timestamps of raingauges
rg_timestrings = timestamps_ending(
    acctime + pd.Timedelta(minutes=5),
    duration=pd.Timedelta(hours=1),
    interval=pd.Timedelta(minutes=5)
)

# Raingauge pattern
rg_pattern = ['rf5m_20'+ts for ts in rg_timestrings]

# Finding time nearest radar file
# to accumulation end time
minute = acctime.minute
nearest_6min = acctime.minute // 6 * 6

nearest_rad_timestamp = pd.Timestamp(
    acctime_str[:-2]+f'{nearest_6min:02}'
)

rad_timestrings = timestamps_ending(
    nearest_rad_timestamp,
    duration=pd.Timedelta(hours=1),
    interval=pd.Timedelta(minutes=6)
)

Step 4: Extracting raingauge and radar files from their respective directories.

located_rg_files = []
for pat in rg_pattern:
    located_rg_files.append(locate_file(rg_dir, pat))

located_radar_files = []
for ts in rad_timestrings:
    located_radar_files.append(locate_file(rad_dir, ts))

Step 5: Read data from raingauge files into a Rain object. Coordinates are geodetic, following that in the files. There is some noise in the raingauge, so known problematic stations are filtered away.

rg_object_geodetic = Rain(
    located_rg_files,
    'geodetic',
    duration=pd.Timedelta(minutes=5),
    NAN=[3276.7, 32767]
)

bad_stations = ['N25', 'SSP', 'D25', 'TWN', 'TMS', 'N14']
rg_object_geodetic = rg_object_geodetic.remove_bad_stations(
    bad_stations
)

Step 6: Read radar files into xarray.DataArrays. The data in the files are already in Cartesian Coordinates, in the Centered Azimuthal Projection.

reflec_list = []
for file in located_radar_files:
    reflec = read_iris_grid(
        file
    )

    reflec_list.append(reflec)

Data Reprojection

This section demonstrates the reprojection of extracted raingauge and radar data to a user-defined grid.

Step 1: Define the target grid as a pyresample AreaDefinition.

# Defining target grid
area_id = "hk1980_grid"
description = ("A grid centered about Hong Kong with a resolution "
               "880m in the x-direction and 660m in the y-direction "
               "HK1980 easting/northing coordinates")
proj_id = 'hk1980'
projection = ('+proj=tmerc +lat_0=22.31213333333334 '
              '+lon_0=114.1785555555556 +k=1 +x_0=836694.05 '
              '+y_0=819069.8 +ellps=intl +towgs84=-162.619,-276.959,'
              '-161.764,0.067753,-2.24365,-1.15883,-1.09425 +units=m '
              '+no_defs')

x_size = 1000
y_size = 1000

area_extent = (792000, 796000, 880000, 862000)

area_def = get_area_def(
    area_id, description, proj_id, projection, x_size, y_size, area_extent
)

Step 2: Convert coordinates of raingauge object to desired projection. In this example, the desired projection is HK1980. This can be achieved by the .reproject() method of the Rain object.

inProj = pyproj.Proj(init="epsg:4326")
outProj = pyproj.Proj(area_def.proj_str)

rg_object = rg_object_geodetic.reproject(inProj, outProj, "HK1980")

Step 3: Regrid radar reflectivity from Centered Azimuthal Projection to HK1980.

reproj_reflec_list = []
for reflec in reflec_list:
    reproj_reflec = grid_resample(
        reflec,
        reflec.attrs['area_def'],
        area_def, coord_label=['easting', 'northing']
    )
    reproj_reflec_list.append(reproj_reflec)

reflectivity = xr.concat(reproj_reflec_list, dim='time')
standardize_attr(reflectivity, frame_type=FrameType.dBZ)

Accumulating and interpolating rainfall

Interpolate rainfall recorded by raingauges into the user-defined grid and accumulate radar rainfall over an hour after making the necessary adjustments.

Step 1: Interpolate Rain object to user-defined grid. In this example, ordinary kriging is used.

Using kriging may require further customisation of certain parameters.

# Perform some primitive quality control
upperQ = np.quantile(rg_object.rainfall, .75)
lowerQ = np.quantile(rg_object.rainfall, .25)
iqr = upperQ - lowerQ

noisePos = np.logical_or(rg_object.rainfall > upperQ + 1.5*iqr,
                         rg_object.rainfall < lowerQ - 1.5*iqr)

alpha = np.where(noisePos, 1e4, 1e-10)

kernel = kernels.Matern()

interpolated_rg = rg_interpolate(
    rg_object, area_def, 'ordinary_kriging',
    coord_label=['easting', 'northing'],
    kernel=kernel,
    alpha=alpha,
    n_restarts_optimizer=20
)

Step 2: Convert to radar reflectivity to rainrates, interpolate rainrates to times of raingauges, and convert to rainfalls accumulated every 5 minutes.

rainrates = conversion.to_rainfall_rate(reflectivity, False, a=58.53, b=1.56)

# Convert time coordinates of rainrates from start time
# to end time
rainrates_time_endtime = rainrates.copy()
rainrates_time_endtime.coords['time'] = \
    [
        pd.Timestamp(t) + pd.Timedelta(minutes=6)
        for t in rainrates.coords['time'].values
]

rainrates_5min = conversion.temporal_interpolate(
    rainrates_time_endtime,
    rg_object.start_time + pd.Timedelta(minutes=5),
    rg_object.end_time,
    result_step_size=pd.Timedelta(minutes=5),
    interp_type='quadratic'
)
standardize_attr(rainrates_5min, frame_type=FrameType.mmph)
rainfalls = conversion.to_rainfall_depth(rainrates_5min)

Step 3: Accumulate rainfall over an hour.

# only last frame are required in this case
acc_rf = conversion.acc_rainfall_depth(
    rainfalls,
    rg_object.end_time,
    rg_object.end_time,
    pd.Timedelta(minutes=60)
)

Compositing rainfall

Perform compositing on radar and raingauge derived rainfall to obtain a composite QPE.

Some parameter tuning may be required to make the observations fit better with each other.

comprf = comp_qpe(
    area_def,
    rg_object=rg_object,
    rg_interp=interpolated_rg,
    rad_rf=acc_rf,
    rg_radius=5000,
    max_truth={'rg': 1., 'radar': 0.1}
)

Plotting

Plot composited radar and raingauge rainfall.

# Plotting function for neatness.


def plot_map(
    da, rg_object, acctime, area_def,
    based='raingauge and radar',
    savepath='',
):
    """
    A custom function for plotting a map.

    Parameters
    --------------
    da: xarray.DataArray
        Contains data to be plotted.
    rg_object: Rain
        Contains raingauge data.
    acctime: pd.Timestamp
        Contains the endtime of the accumulation
        period.
    area_def: pyresample.geometry.AreaDefinition
        AreaDefinition of the grid.
    based: str
        Type of data plotted in the map.
    savepath: str
        Path to save the image to.

    """
    # Defining the colour scheme
    levels = [
        0, 0.5, 2, 5, 10, 20,
        30, 40, 50, 70, 100, 150,
        200, 300, 400, 500, 600, 700
    ]

    cmap = ListedColormap([
        '#ffffff', '#9bf7f7', '#00ffff', '#00d5cc', '#00bd3d', '#2fd646',
        '#9de843', '#ffdd41', '#ffac33', '#ff621e', '#d23211', '#9d0063',
        '#e300ae', '#ff00ce', '#ff57da', '#ff8de6', '#ffe4fd'
    ])

    norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)

    # Plotting axes
    plt.figure(figsize=(28, 21))
    crs = area_def.to_cartopy_crs()
    ax = plt.axes(projection=crs)

    # Plot data
    quadmesh = da.plot(
        cmap=cmap,
        norm=norm,
        extend='max',
        cbar_kwargs={'ticks': levels, 'format': '%.3g'}
    )

    # Adjusting size of colorbar
    cb = quadmesh.colorbar
    cb.ax.set_ylabel(
        da.attrs['long_name']+'['+da.attrs['units']+']',
        fontsize=28
    )

    cb.ax.tick_params(labelsize=24)

    # Setting labels
    ax.xaxis.set_visible(True)
    ax.yaxis.set_visible(True)

    for tick in ax.xaxis.get_major_ticks():
        tick.label.set_fontsize(24)
    for tick in ax.yaxis.get_major_ticks():
        tick.label.set_fontsize(24)

    ax.xaxis.label.set_size(28)
    ax.yaxis.label.set_size(28)

    # Coastlines
    shp = shpreader.Reader(os.path.join(
        DATA_DIR, 'gadm36_HKG_shp/gadm36_HKG_0_hk1980'))
    for _, geometry in zip(shp.records(), shp.geometries()):
        ax.add_geometries([geometry], crs, facecolor='None', edgecolor='black')

    # Show title
    plt.title(
        (f"Last Hour Rainfall at {acctime.strftime('%H:%MH %d-%b-%Y')}\n"
         f"(based on {based} data)"),
        fontsize=32
    )

    plt.savefig(savepath, dpi=300)
# Plotting maps


# Raingauge only
plot_map(
    interpolated_rg, rg_object,
    acctime, area_def,
    based='raingauge',
    savepath=os.path.join(OUTPUT_DIR, f'raingauge_{acctime_str}.png')
)

# Radar only
plot_map(
    acc_rf, rg_object,
    acctime, area_def,
    based='radar',
    savepath=os.path.join(OUTPUT_DIR, f'radar_{acctime_str}.png')
)

# Composite raingauge and radar
plot_map(
    comprf, rg_object,
    acctime, area_def,
    savepath=os.path.join(OUTPUT_DIR, f'comp_{acctime_str}.png')
)
  • Last Hour Rainfall at 15:00H 20-Apr-2019 (based on raingauge data)
  • Last Hour Rainfall at 15:00H 20-Apr-2019 (based on radar data)
  • Last Hour Rainfall at 15:00H 20-Apr-2019 (based on raingauge and radar data)

Total running time of the script: ( 1 minutes 13.995 seconds)

Gallery generated by Sphinx-Gallery